
The Definite Generalized Eigenvalue Problem:

A New Perturbation Theory1

Roy Mathias and Chi-Kwong Li
Department of Mathematics, College of William & Mary, Williamsburg, VA 23187
E-mail: ckli@math.wm.edu, mathias@math.wm.edu
October 22, 2004

Dedicated to Pete Stewart on the occasion of his sixty fifth birthday.

Abstract
Let (A, B) be a definite pair of n × n Hermitian matrices. That is, |x∗Ax| + |x∗Bx| 6= 0

for all non-zero vectors x ∈ Cn. It is possible to find an n × n non-singular matrix X with
unit columns such that

X∗(A + iB)X = diag(α1 + iβ1, . . . , αn + iβn)

where αj and βj are real numbers. We call the pairs (αj, βj) normalized generalized eigenval-

ues of the definite pair (A, B). These pairs have not been studied previously. We rework the
perturbation theory for the eigenvalues and eigenvectors of the definite generalized eigenvalue
problem βAx = αBx in terms of these normalized generalized eigenvalues and show that
they play a crucial rule in obtaining the best possible perturbation bounds. In particular, in
existing perturbation bounds, one can replace most instances of the Crawford number

c(A, B) = min{|x∗(A + iB)x| : x ∈ Cn, x∗x = 1}

with the larger quantity

dmin = min{|αj + iβj| : j = 1, . . . , n}.

This results in bounds that can be stronger by an arbitrarily large factor. We also give
a new measure of the separation of the jth eigenvalue from the kth:

|(αj + iβj) sin(arg(αj + iβj) − arg(αk + iβk))|.

This asymmetric measure is entirely new, and again results in bounds that can be arbitrarily
stronger than the existing bounds. We show that all but one of our bounds are attainable.
We also show that the Crawford number is the infimum of the distance from a definite pencil,
a fortiori diagonalizable, to a non-diagonalizable pair.

AMS(MOS) 65F15, 65F35, 15A18, 15A60
Keywords Definite Generalized Eigenvalue Problem, Perturbation Theory, Eigenvalue, Eigen-
vector, Eigenspace, Simultaneous Diagonalization

1Both authors were supported in part by NSF grants DMS-9704534, and DMS-0071994. The work was
completed while the second author was supported by an Engineering and Physical Sciences Research Council
Visiting Fellowship under grant GR/T08739 at the University of Manchester, UK.

Numerical Analysis Report 457, Manchester Centre for Computational Mathematics, October 2004.

1



1 Introduction

Let (A, B) be a pair of n × n Hermitian matrices. We say that it is a definite pair if

|x∗Ax| + |x∗Bx| 6= 0 for all non-zero vectors x ∈ Cn. We say that (α, β) is a generalized

eigenvalue of (A, B) with eigenvector x 6= 0 in Cn if

βAx = αBx.

For a definite pair (A, B), there exists an invertible matrix X such that

X∗(A + iB)X = diag(α1 + iβ1, . . . , αn + iβn)

where (αj, βj) are the generalized eigenvalues of (A, B) and the jth column xj of X is the

corresponding eigenvector satisfying βjAxj = αjBxj.

Clearly, if (αj, βj) is a generalized eigenvalue for the pair (A, B), then (dαj, dβj) is also

a generalized eigenvalue for any nonzero d. There are at least three ways to normalize the
eigenvalues. The perturbation bounds are highly dependent on the normalization. Stewart
observed this as early as 1972 [16, pp. 681-2], but later authors have not explicitly noticed
this.

First, one may require that

α2
j + β2

j = 1. (1.1)

In this case we get αj + iβj = eiθj , where θj is the argument of αj + iβj and we call θj an

eigenangle.2 Second, in the case that B is positive definite, one can require that

βj = 1. (1.2)

In this case the resulting αj is the cotangent of the eigenangle and it is a generalized eigenvalue

of Ax = λBx.
We propose a new normalization – choose (αj, βj) so that the columns of X, the diago-

nalizing matrix, have unit length. In this paper, we shall focus on this third normalization,
and call them the resulting pairs normalized generalized eigenvalues of (A, B). The quantity

dj ≡ |αj + iβj|

is important in our discussion. It is useful to identify the pair of real numbers (α, β) with

the complex number α+ iβ, and the Hermitian pair (A, B) with the general complex matrix
A + iB.

This new normalization is the first key idea in our approach, however, we will have
occasion to use each of the other two normalizations.

The Crawford number of (A, B):

c(A, B) ≡ min{|x∗(A + iB)x| : x ∈ Cn, x∗x = 1} (1.3)

2One may view (1.1) as requiring ‖(αj , βj)‖ = 1, where the norm is the usual Euclidean norm. Then one
may consider allowing other norms. Stewart proposed using the max-norm that is, max{αj , βj} = 1 in [16,

p. 680]. The resulting (αj , βj) are within a factor of
√

2 of those given by (1.1).
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Figure 1: The Crawford number versus dmin

is just the distance from the numerical range of A + iB to the origin. A Hermitian pair
(A, B) is definite if and only if c(A, B) is positive. We also show (Theorem 2.1) that for

a definite pair (A, B), the distance to the boundary of the set of diagonalizable matrices is

also c(A, B). Thus one may view c(A, B) as a measure of how definite (A, B) is, and hence,
it seems natural that it should appear in perturbation bounds. However, we shall prove
perturbation bounds in terms of the normalized generalized eigenvalues and will show that
these bounds are stronger than those in terms of the Crawford number. Our contention is
that ideally, the Crawford number should not appear in spectral perturbation bounds for the
definite generalized eigenvalue problem, though it does determine the “domain of validity”
of the error bound.

The second key idea is that since the columns of X are now required to be unit we can
reduce almost all perturbation problems to the case of perturbing diagonal pairs where the

analysis is much simpler, at the cost of introducing a function of ‖X‖ ≤ √
n into the bounds.

The condition number of X, that is, ‖X‖‖X−1‖, which can be very large does not enter our
bounds. This diagonalization approach simplifies the analysis, and allows us to replace the
Crawford number in bounds by the larger number

dmin ≡ min{dj : j = 1, . . . , n} = min{|αj + iβj| : j = 1, . . . , n}. (1.4)

Stewart and Sun [14] prove results in terms of c(A, B), but then observe that these results
are not satisfactory , and that the bounds should be in terms of dmin, as ours are. To see
that dmin can be much larger than the Crawford number consider

Example 1.1 Take ε > 0 and let

A =
(

1 0
0 −1

)

, B =
(

ε 0
0 ε

)

.

Then c(A, B) = ε while dmin =
√

1 + ε2 > 1. Thus, dmin can be larger than c(A, B) by an

arbitrarily large factor. (See Figure 1.)

Our bounds will be in terms of the numerical radius:

r(T ) ≡ max{|x∗Tx| : x ∈ Cn, x∗x = 1}
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α1 + iβ1
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θ1−θ2
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Figure 2: The Separation of α1 + iβ1 and α2 + iβ2

rather than the more usual spectral norm. This results in cleaner analysis and bounds. The
properties of the numerical radius are described in Section 2.1.

Since we are working in terms of the normalized generalized eigenvalues we need a notion
of the separation between normalized generalized eigenvalues. We define the separation of

zj = αj + iβj = dje
iθj from zk = αk + iβk = dke

iθk to be |δj(θk)| where

δj(θ) ≡ dj sin(θ − θj). (1.5)

Notice that |δj(θk)| is not symmetric in zj and zk. It is the distance from the point zj in the

complex plane to the line through ±zk. Alternatively,

δj(θ) = min{|z| : arg(zj + z) = arg(zk)(modπ)}. (1.6)

See Figure 2.

Take ε > 0 small. Notice that the complex numbers z1 = eiε and z2 = ei(π−ε), though well
separated on the unit circle are not well separated in our new notion of separation. Note
that | sin(θj − θk)| is just the distance from zj to zk in the chordal metric, which is widely

used in the analysis of the generalized eigenvalue problem.
We will show that our bounds that use this asymmetric measure of separation are asymp-

totically optimal in the diagonal case. The usual approach to measuring the separation of
zj from zk in this context would be to use something like

min{dj, dk} | sin(θj − θk)|

which is smaller that |δj(θk)|. Some results are in terms of the even smaller quantity

c(A, B)| sin(θj − θk)|.
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This is the main difference between our eigenvector perturbation bounds and those in the
literature, and is the reason that our bounds are stronger. It appears that |δj(θk)| has not

been considered before.
Our approach results in close to optimal perturbation bounds for both eigenangles and

eigenvectors. The germ of our bounds for eigenangles was already present in Stewart’s 1972
paper, but then later authors were distracted by the apparent elegance of the Crawford
number. It appears that our bounds for the perturbation of eigenvectors and eigenspaces
are completely new.

In addition to our stronger bounds we answer two open questions from [14, Chapter 6].
Here is a list of the key results and their locations in the paper. They all depend on the

use of normalized geneneralized eigenvalues to preserve the “scale of the eigenvalue”.

1. The condition number of a simple eigenangle θj is d−1
j (Theorems 3.3 and 3.5). Fur-

thermore, d−1
j bounds not only the local sensitivity of θj but also the sensitivity to

small perturbations, those of size less than a certain easily computable quantity rj (see

the bound (3.6)).

2. We can use dmin, or a related quantity involving the dj’s, to replace c(A, B). In fact,

c(A, B) does not appear in any of our perturbation bounds! We may sometimes use

c(A, B) implicitly in the statement of our bounds to ensure that the perturbation is
not so large that we lose definiteness.

3. An ill-conditioned eigenangle, one with a small di, can cause a nearby eigenangle to
be sensitive to small perturbations. Stewart observed this and called it ill-disposition
[16, pp. 685-6]. We explain that the problem is real, but not as serious as one might
fear. See Example 3.4 for an instance of “artificial ill-disposition”, and Examples 4.2
and 4.3 for instances of true ill-disposition. Theorem 4.6 gives a bound on how severe
ill-disposition can be, and Section 4.3 gives an over all discussion of the topic.

4. The separation of the normalized generalized eigenvalue dje
iθj from dke

iθk is

|δj(θk)| = dj| sin(θj − θk)|

not the larger quantity |dje
−iθj − dke

−iθk |, nor the smaller quantities

c(A, B)| sin(θj − θk)|, or min{dj, dk}| sin(θj − θk)|

even though these three quantities are symmetric in zj and zk. See for example,

Theorem 6.1, bound (6.4), and the discussion following the proof of Theorem 6.1.

5. In the diagonal case, the condition number of the jth eigenvector is ∆−1 where

∆ = min{dl| sin(θj − θl)| : l 6= j}

(see Theorem 6.1 and (6.13)). In the general case it is at most ‖X‖2∆−1 ≤ n∆−1 (see

the discussion at the very end of Section 6).
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6. The asymmetry of δk(θj) means that the condition number of two complementary

eigenspaces can be very different. This is possible even in the case n = 2 (see Example

1.2). In the general case see, for example, Lemma 7.1 and Example 7.5

There are a number of interesting features of the perturbation theory for the definite
generalized eigenvalue problem that can be seen even in the 2 × 2 diagonal case.

Example 1.2 Consider the Hermitian pair (A, B) where

A =
(

1 0
0 0

)

and B =
(

3 0
0 106

)

.

Its two eigenangles are θ1 = π/2 and θ2 = arctan(3), with normalized generalized eigenvalues

(0, 106), and (1, 3) which we identify with the complex numbers z1 = 0+106i and z2 = 1+3i.

Using the theory developed in this paper we can deduce the following perturbation results

1. The condition number of θ1 is |z1|−1 = 10−6 while the condition number of θ2 is

|z2|−1 = 1√
10

which is much larger.

2. The condition number of θ1, the larger eigenangle, is a good measure of the sensitivity
of θ1 for perturbations (E, F ) with r(E + iF ) < 1, however, once r(E + iF ) is larger
than 1 the condition number of θ2 is a better measure of the sensitivity of θ1. This is
an instance of “ill-disposition”.

3. The condition number of the eigenvector associated with θ1 is c1 ≡ |z2 sin(θ1 − θ2)|
while the condition number of the eigenvector associated with θ2 is c2 ≡ |z1 sin(θ1−θ2)|.
Thus, though the eigenvalue θ1 is better conditioned by a factor of 105.5, its eigenvector
is worse conditioned by exactly the same factor.

Consider the perturbation

E =
(

0 0.01
0.01 0

)

, F = 0.

Then if one computes the eigenvectors of (A +E, B +F ) one sees that the eigenvector

corresponding to θ1 changes by about 10−2 while the eigenvector corresponding to

θ2 changes by about 3 × 10−8 which is about 10−5.5 times the change in the first

eigenvector.3

We shall present several illustrative examples in later sections.
To conclude the introduction here is an outline of the paper. In Section 2 we present

some ideas that will be used throughout the paper – the numerical range and numerical
radius, rotating the definite generalized eigenvalue problem, the definition, uniqueness and

3Of course, this is just a single perturbation, it does not prove the assertion about the conditioning of
the eigenvectors.
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computation of normalized generalized eigenvalues, the Crawford number, and a discussion
of the reduction to the diagonal case.

In Section 3 we present our basic eigenangle perturbation bounds. At the end of the
section we present an example of ill-disposition–an ill-conditioned eigenvalue causing a nearby
eigenvalue to be sensitive to small changes. To better understand this phenomenon we look
at perturbation bounds for multiple and clustered eigenangles in Section 4. In Section 5 we
quantify the observation that off-diagonal perturbations of a diagonal pair cause only second
order perturbations in the eigenangles.

We turn our attention to eigenvector perturbation in Section 6 and eigenspace perturba-
tion in Section 7. Section 7 is rather long, containing an analysis of dif–the analog of sep in
the non-symmetric eigenvalue problem–and a version of Stewart’s Approximation Theorem
([15, Theorem 3.5], or [14, Theorem V.2.11]), both of which are necessary to obtain our
stronger eigenspace perturbation bounds.

2 Preliminaries

Here we present facts about some basic quantities and ideas that arise in this paper: the nu-
merical range, numerical radius, norms, and rotating the problem in Section 2.1; the compu-
tation and uniqueness of normalized generalized eigenvalues in Section 2.2, and the reduction
to the diagonal case in Section 2.3. Theorem 2.1 gives the distance to non-diagonalizability,
and is a new result.

2.1 Numerical range and norms

Recall that the numerical range of an n × n matrix T is

W (T ) ≡ {x∗Tx : x ∈ Cn, x∗x = 1},

and that the numerical radius of T , r(T ), is just the distance of furthest point in the numerical
range from the origin:

r(T ) ≡ max{|x∗Tx| : x ∈ Cn, x∗x = 1}. (2.1)

There are many beautiful results on the numerical range and the numerical radius [2, 3, 5,

6, 9, 10]. We shall use only some elementary results. There are a number of connections
between the numerical range and the definite generalized eigenvalue problem:

1. The generalized eigenvalue problem βAx = αBx (A, B Hermitian) is definite if and
only if the numerical range of A+ iB does not contain the origin, and by the convexity
of the numerical range this is equivalent to the numerical range being contained in an
open half plane in the complex plane.

2. If the smallest wedge containing W (A + iB) is {z : θ1 ≤ arg(z) ≤ θ2}, and 0 6∈
W (A + iB), then θ1 and θ2 are the extreme eigenangles of (A, B). This is particularly
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useful in the 2× 2 case since then it is known that W (A+ iB) is an elliptical disk with
the eigenvalues λ1 and λ2 of A + iB as the foci and minor axis of length

√

tr(A2 + B2) − |λ1|2 − |λ2|2.

See, e.g., [9, Lemma 1.3.3].

3. The normalized generalized eigenvalues are all contained in W (A+iB), and by the pre-

vious observation, at least two of them are on the boundary of W (A+ iB). (Assuming

that the pair (A, B) is at least 2 × 2.)

4. The Crawford number is the distance from W (A + iB) to the origin, and for a definite
pair, it is the distance to the boundary of the set of diagonalizable pairs.

5. If we perturb (A, B) to (A + E, B + F ) then r(E + iF ) is the appropriate measure of

the size of perturbation (E, F ).

Numerical analysts tend to prefer to use the spectral or operator norm, sometimes also
called the 2−norm:

‖X‖ ≡ max{‖Xx‖ : x ∈ Cn, x∗x = 1} =
√

λmax(X∗X)

rather than the numerical radius. The two quantities are very closely related. One can
always convert bounds in terms of one into bounds in terms of the other using the fact that
for any n × n matrix A

r(A) ≤ ‖A‖ ≤ 2r(A).

We prefer the numerical radius because the results one obtains when using it tend to be
simpler to state, and only incidentally, very slightly stronger. Here are some other relations
between the spectral norm and the numerical radius that we will need. For any Hermitian
E and F

‖E‖ = r(E)

and

r(E + iF ) ≤ r(E) + r(F ) = ‖E‖ + ‖F‖ ≤
√

2
(

‖E‖2 + ‖F‖2
)1/2

.

It is easily shown that

r(E + iF ) = max{‖ cos(θ)E + sin(θ)F‖ : 0 ≤ θ < π},

(see, e.g., [9, Section 1.5]) and consequently that for any θ ∈ R

‖ cos(θ)E + sin(θ)F‖ ≤ r(E + iF ). (2.2)

Note that for any n × n matrix X, we have

r(X∗TX) = max{|x∗X∗TXx| : ‖x‖ = 1} ≤ max{|y∗Ty| : ‖y‖ ≤ ‖X‖} ≤ ‖X‖2r(T ). (2.3)
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The numerical radius satisfies the following easily proved submatrix inequalities. Let

A =
(

A11 A12

A21 A22

)

where A11 and A22 are square. Then

r(
(

A11 0
0 A22

)

) = max{r(A11), r(A22)} ≤ r(A), (2.4)

and

r(
(

0 A12

A21 0

)

) ≤ r(A). (2.5)

We will also use the Frobenius norm

‖X‖F ≡




∑

ij

|xij|2




1/2

= (tr X∗X)1/2 ,

which is computed more easily than the spectral norm, to which it is related to by

‖X‖ ≤ ‖X‖F ≤
√

n‖X‖.

2.2 Crawford number, distance to non-diagonalizable matrices,

rotating pairs

Let us now consider the Crawford number defined in (1.3). One of the important conclusions
from this research is that one can replace the Crawford number in bounds by the larger
number

dmin ≡ min{|αj + iβj| : j = 1, . . . , n}.
To see that dmin is indeed larger, note that each of the unit generalized eigenvalues αj + iβj

lies in the numerical range of A + iB and the Crawford number is just the distance from
W (A + iB) to the origin. Example 1.1 shows that the ratio c(A, B)/dmin can be arbitrarily
small for definite pairs.

Another disadvantage of the Crawford number is that it is hard to compute. Until
recently, the usual approach was to note that the definition (1.3) is equivalent to

c(A, B) = max
θ

λn(cos(θ)A + sin(θ)B),

and then attempt to solve the single variable maximization problem. Each function eval-

uation requires the solution of a Hermitian eigenvalue problem – that is, it requires O(n3)

flops4. One is interested in bounding c(A, B) away from 0, so if c(A, B) is small one will

4A “flop” is a floating point operation.
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likely need many function evaluations in order to compute it to a reasonable relative accu-
racy. Higham, Tisseur and Van Dooren have shown how to compute c(A, B) by bisection,

solving an n × n quadratic eigenvalue problem at each step. [7].

A common approach is to estimate a lower bound on c(A, B) as follows. Suppose that

one knows that B is positive definite, and so c(A, B) ≥ ‖B−1‖−1. Further, the first step in
the standard direct method for solving the definite generalized eigenvalue problem in this
context is to compute a Cholesky factorization of B: B = LL∗. Given L one can easily

estimate ‖L−1‖ = ‖B−1‖1/2, at a cost of O(n2) flops using a condition estimator.
The Crawford number does however satisfy a very pleasant perturbation bound:

c(A + E, B + F ) ≥ c(A, B) − r(E + iF ),

and it is the distance to the boundary of the set of diagonalizable pairs.

Theorem 2.1 Let (A, B) be a definite pair. Then

c(A, B) = inf{r(E + iF ) : A + Eand B + F are not diagonalizable by congruence}. (2.6)

We need two lemmas to prove Theorem 2.1. The first one is a standard result character-
izing simultaneous diagonalizability by congruence.

Lemma 2.2 [8, Table 4.5.15, part 1 (b)] Let A, B ∈ Hn with A invertible. Then A and B

are simultaneously diagonalizable by congruence if and only if A−1B is diagonalizable and
has real eigenvalues.

By Lemma 2.2, we can prove a limiting case of Theorem 2.1.

Lemma 2.3 Let A, B ∈ Hn where n ≥ 2. If c(A, B) = 0 and W (A + iB) is contained in a

closed half plane, then for any ε > 0 there is a pair E, F ∈ Hn such that r(E + iF ) < ε and
the pair A + E, B + F is not simultaneously diagonalizable by congruence.

Proof Let φ ∈ [0, 2π) be such that W (eiφ(A + iB)) = eiφW (A + iB) lies in the closed

upper half plane. Define Ã, B̃ ∈ Hn by Ã + iB̃ = eiφ(A + iB). We show that there exists

Ẽ, F̃ ∈ Hn such that r(Ẽ + iF̃ ) < ε and the pair Ã + Ẽ, B̃ + F̃ ∈ Hn are not simultaneously

diagonalizable by congruence. Let E, F ∈ Hn be such that Ẽ + iF̃ = eiφ(E + iF ). Then
E, F ∈ Hn will satisfy the desired conclusion. For notational simplicity, we assume that

φ = 0, i.e., (Ã, B̃) = (A, B).

Note that there is an invertible matrix X such that X∗AX = diag(α1, . . . , αn) and

X∗BX = diag(β1, . . . , βn), with β1 ≥ · · · ≥ βn = 0. We will determine (X∗EX, X∗FX)
with

r(X∗EX + iX∗FX) ≤ ‖X‖2r(E + iF ) < ‖X‖2ε.

Again, for notational simplicity, we may assume that X = I.
Note that for two Hermitian matrices P = P1 ⊕ P2 and Q = Q1 ⊕ Q2 with P1, Q1 ∈ Hk,

P and Q are simultaneously diagonalizable by congruence if and only if Pj and Qj are
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simultaneously diagonalizable by congruence for j = 1, 2. Thus, we can focus on a 2 × 2
submatrix of the diagonal matrix A + iB, and find a perturbation of it so that the resulting
matrix is not diagonalizable by congruence.

By our reduction, we have A + iB = diag(α1 + iβ1, . . . , αn + iβn), and W (A + iB) is the

convex hull of the set {αj + iβj : 1 ≤ j ≤ n}. We consider two cases:

(a) W (A+ iB) touches the real line only at the origin. Then αj + iβj = 0 for j = 1 or 2 .

Thus, we may permute the rows and columns of A + iB and multiply A by −1 if necessary
so that we have α1 ≥ 0 and α2 + iβ2 = 0.

(b) There is a line segment in W (A + iB) touching the origin. Again, we may permute
the rows and columns of A + iB and multiply A by −1 if necessary so that we have α1 ≥ 0,
α2 ≤ 0, β1 = β2 = 0.

Case (a): Take η > 0, and set α̃1 = α1 + η, which is necessarily positive. Set

E = η
(

1 0
0 −1

)

, and F = η
(

0 1
1 (α1 + η)−1β1

)

.

Then

C = (A + E)−1(B + F ) =
(

α̃−1
1 β1 α̃−1

1 η
−1 α̃−1

1 β1

)

,

which has eigenvalues α̃−1
1 β1 ± i(α̃1η)1/2. Thus (A + E, B + F ) is not diagonalizable. Now

take η > 0 small enough so that r(E + iF ) ≤ ε.

Case (b): Take

E = η
(

1 0
0 −1

)

, and F = η
(

0 1
1 0

)

.

Then

C = (A + E)−1(B + F ) =
(

0 (α1 + η)−1η
(α2 − η)−1η 0

)

has (non-zero) pure imaginary eigenvalues ±η[(α1 + η)(α2 − η)]−1/2 (note that (α1 − η)(α2 −
η) < 0). By Lemma 2.2 the pair (A + E, B + F ) is not simultaneously diagonalizable by

congruence. Now choose η > 0 sufficiently small to ensure r(E + iF ) < ε. 2

Proof of Theorem 2.1 Take E + iF such that r(E + iF ) = c(A, B), and 0 ∈ W ((A+E)+

i(B + F )) . Set Ã = A = E, and B̃ = B + F . Now by Lemma 2.3 there is an arbitrarily

small perturbation of Ã and B̃ that is non-diagonalizable. 2

A useful operation is that of rotating a pair through an angle φ. That is, replace (A, B)

by (Â, B̂) = (cos φA − sin φB, sin φA + cos φB). Note that if A and B are real then so are

Â and B̂. One can check that Â + iB̂ = eiφ(A + iB). From this one can see that rotating
a pair through an angle φ leaves the eigenvectors unchanged, and that the new eigenangles

are θ̂j = θj + φ. Clearly, such replacements will not affect our comparison of the values
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(αj, βj) = (cos θj, sin θj) and (α̃j, β̃j) = (cos θ̃j, sin θ̃j), nor will they change r(E + iF ) or

c(A, B). In fact, we can choose φ so that B is positive definite such that

c(A, B) = λn(B) > r(E + iF ),

where λn(B) is the smallest eigenvalue of B. Further, we may arrange αj and βj so that

−1 < α1 ≤ · · · ≤ αn < 1, i.e., π > θ1 ≥ · · · ≥ θn > 0.

2.3 Computation of normalized generalized eigenvalues and vec-
tors

Proposition 2.4 Let (A, B) be a Hermitian pair with B is positive definite. Then X is
invertible with unit columns satisfying

X∗(A + iB)X = diag(α1 + iβ1, . . . , αn + iβn) (2.7)

if and only if X = B−1/2US for some unitary U such that U ∗(B−1/2AB−1/2)U is diagonal

and S = diag(1/s1, . . . , 1/sn) with d2
j = 1/βj is the jth diagonal entry of U ∗B−1U for

j = 1, . . . , n.

Proof. Suppose X is invertible with unit columns and satisfies (2.7). Comparing the

skew-hermitian parts, we see that X∗BX = diag (β1, . . . , βn), and hence U = B1/2XS is

unitary if S = (X∗BX)−1/2. One easily sees that U and S satisfy the asserted conditions.
The sufficiency of the proposition can be easily verified. 2

Note that the normalized eigenvalues (α1, β1), . . . , (αn, βn) are not uniquely determined

for a given definite pair (A, B) with B > 0 if B−1/2AB−1/2 has repeated eigenvalues. Nev-
ertheless, one may impose an additional assumption on the matrix X so that the resulting
normalized eigenvalue pairs will be uniquely determined. We mention a few possibilities in
Proposition 2.5. More importantly, in the rest of the paper, we will see that this lack of
uniqueness does not compromise the utility of the bounds we derive.

Proposition 2.5 Let (A, B) be a definite Hermitian pair. Then the diagonal matrix on the

right side of (2.7) will be uniquely determined up to permutation if either of the following
assumptions is imposed on X.

1. X is chosen so that (αj, βj) = (αk, βk) whenever θj = θk.

2. det(X∗X) has the maximum (or minimum) value among all possible matrices X sat-

isfying (2.7).

Proof. We may rotate the pair (A, B) to make B positive definite. So we assume that B
is positive definite.

Suppose X = B−1/2US satisfies (2.7). If B−1/2AB−1/2 has k distinct eigenvalues with

multiplicities n1, . . . , nk, respectively, we may further assume that U = [U1| · · · |Uk] is in
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block form so that the columns in Uj span the eigenspace of the jth distinct eigenvalue of

B−1/2AB−1/2 for j = 1, . . . , k.

For 1, we want to choose U so that U ∗
j B−1Uj has constant diagonal entries for j = 1, . . . , k.

One can always do that (e.g., see [9, Theorem 1.3.4]) by replacing Uj by a suitable UjWj,

where Wj is an nj ×nj unitary matrix, so that W ∗
j U∗

j B−1UjWj has constant diagonal entries

equal to (tr U ∗
j B−1Uj)/nj. Even though the choices of Wj’s are not unique, if one modifies X

according to U , the resulting diagonal matrix X∗BX will be uniquely determined, namely,

the jth diagonal entry equals the reciprocal of that of X∗B−1X. One easily checks that the
diagonal matrix X∗AX will then be uniquely determined also.

For 2, we want to choose U so that the product of the diagonal entries of U ∗
j B−1Uj has

minimum or maximum value depending on whether we want det(X∗X) to be maximum or

minimum. It is well-known that the former case happens if U ∗
j B−1Uj is in diagonal form, and

the latter case happens if U ∗
j B−1Uj has constant diagonal entries (as in 1). By arguments

similar to those in the preceding paragraph, these cases can be attained and the matrix
X∗(A + iB)X will be uniquely determined. 2

From the proof of the above result, one sees that the conditions imposed on X can be

translated into conditions on the diagonal entries of the matrices U ∗
j B−1Uj for j = 1, . . . , k.

As a result, one can easily impose other conditions on X that will lead to a unique diagonal
matrix X∗(A + iB)X.

2.4 Reduction to the diagonal case

One often tries to reduce a problem to the diagonal case since it is much simpler. In the
Hermitian eigenvalue problem there is no cost to this transformation since the diagonal-
ization can always be effected using a unitary similarity which preserves norms. In the
non-symmetric (or non-Hermitian) eigenvalue problem one cannot always diagonalize the
matrix, and even when one can, the similarity may be arbitrarily badly ill-conditioned so
the resulting bounds are very weak. We shall see that the definite generalized eigenvalue
problem is in-between these two cases, closer to the Hermitian eigenvalue problem since
diagonalization introduces a factor of at most n into the bounds. Here are the details.

Let (A, B) be an n×n definite pair, and let (E, F ) be a perturbation such that r(E+iF ) <

c(A, B). Let X be an invertible n × n matrix with unit columns such that

X∗AX = DA, and X∗BX = DB

with DA and DB diagonal. Since the columns of X are unit we have

‖X‖ < ‖X‖F =
√

trX∗X =
√

n.

The inequality is strict because X is required to be invertible.
Now suppose that we want to relate the eigenvalues and eigenvectors of the perturbed

pair (A + E, B + F ) to those of (A, B). Applying the same transformation to the perturbed
pair we have

X∗(A + E)X = DA + X∗EX ≡ DA + Ẽ
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X∗(B + F )X = DB + X∗FX ≡ DB + F̃ ,

where
‖Ẽ‖ = ‖X∗EX‖ ≤ ‖X‖2‖E‖ ≤ n‖E‖

‖F̃‖ = ‖X∗FX‖ ≤ ‖X‖2‖F‖ ≤ n‖F‖
and

r(Ẽ + iF̃ ) = r(X∗(E + iF )X) ≤ ‖X‖2r(E + iF ).

Let P be a matrix such that pii = 0 and

(I + P )∗(DA + Ẽ)(I + P ) = DÂ, and (I + P )∗(DB + F̃ )(I + P ) = DB̂

and the DÂ and DB̂ are diagonal. The eigenangles and eigenvectors of (DA + Ẽ, DB + F̃ )

are related as follows:

1. The eigenangles of the pair (DA + Ẽ, DB + F̃ ) are the same as those of (A+E, B +F ).

2. The generalized eigenvalues of the problem (DA + Ẽ)x = λ(DB + F̃ )x are the same as

those of (A + E)x = λ(B + F )x.

3. The normalized generalized eigenvalues of the pair (DA+Ẽ, DB+F̃ ) are not necessarily

the same as those of (A + E, B + F ).

4. The jth eigenvector of (DA + Ẽ, DB + F̃ ) is ej + Pj while the jth eigenvector of

(A + E, B + F ) is

X̃j = X(ej + Pj) = Xj +
∑

k 6=j

pjkXk. (2.8)

Here, for any matrix Y let Yk denote the kth column of Y , and let ek denote the k the
column of I, as is conventional.

Notice, from 1, 2, and 3 above, that eigenangles and generalized eigenvalues are preserved
under congruence, but normalized generalized eigenvalues are not. The fact that normalized
generalized eigenvalues are not preserved under congruence is not a reason not to use them,
it is just the price that we must pay to get optimal perturbation bounds. Note also, even if

the Xk’s are unit, the vector X̃j is not necessarily unit. We have the bounds

‖X−1‖−1‖(ej + Pj)‖ ≤ ‖X̃j‖ ≤
√

n‖ej + Pj‖ ≈
√

n.

The basic problem is that the set of matrices with unit columns is not closed under
multiplication.

We know that we can bound the difference between the eigenvalues and eigenvectors of

(A+E, B+F ) and those of (A, B) in terms of the difference between those of (DA+Ẽ, DB+F̃ )

and those of (DA, DB). A natural question arises: are the bounds that we get attainable?

They are easily shown to be attainable in the diagonal case. Let (Ẽ, F̃ ) be a perturbation
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that attains, or almost attains, the bounds in the diagonal case. We can then back-transform
this perturbation to get

(E, F ) = (X−∗ẼX−1, X−∗F̃X−1).

Unfortunately, in doing this we may have greatly increased the norm of the perturbation
(E, F ) since

‖E‖ ≤ ‖X−1‖2‖Ẽ‖ and ‖F‖ ≤ ‖X−1‖2‖F̃‖
and even though we know that X−1 exists we have no a priori bound on its norm. In short,
the attainability of the bounds in the diagonal case does not automatically guarantee the
attainability of the bounds in the general case. We use more careful arguments to show that
the bounds are approximately attainable.

The basic problem is that the set of matrices with unit columns is not closed under
inversion.

Interestingly, ill-conditioning of X is not always bad in the context of perturbation
bounds. Suppose that X is invertible, but that all its columns are almost parallel to X1, its
first column. In particular, suppose that

Xk = (1 + ε2
k)

−1/2(X1 + εkVk) k = 2, · · · , n

where Vk is a unit vector orthogonal to X1, and εk ≤ ε which is small. We may also assume,
without loss of generality, that pik ≥ 0. Then the first perturbed eigenvector is

X̃1 = X1 +
n
∑

k=2

pk1
√

1 + ε2
k

X1 +
n
∑

k=2

pk1εk
√

1 + ε2
k

Vk = αX1 + βv

where

|α| = 1 +
n
∑

k=2

|pk1| ≥ 1,

|β| ≤
n
∑

k=2

|pk1| ≤
√

n‖P‖ε,

and v is a unit vector, which, being a linear combination of V2, . . . , Vn, is necessarily

orthogonal to X1. Set X̂1 ≡ X̃1/α = X1 + (β/α)v. Then, if we let θ(u, v) denote the angle
between the vectors u and v, we have the bound

| tan θ(X1, X̃1)| = | tan θ(X1, X̂1)| = ‖X1 − X̂1‖ = |β/α| ≤
√

n‖P‖ε.

So, as ε → 0, the matrix X becomes increasing ill-conditioned, but, our bound on the
perturbation of the eigenvectors becomes smaller.

In the Hermitian or non-Hermitian eigenvalue problems we diagonalize a matrix using
a unitary or invertible similarity. Both these classes of matrices are closed under inversion
and multiplication. This is not the case for the set of matrices with unit columns that we
will use to diagonalize a definite pair. Despite this, the perturbation results we obtain are a
powerful argument for the use of diagonalizing matrices with unit columns and the resulting
normalized generalized eigenvalues.
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3 Eigenangle Perturbation Bounds via min-max

It is known that if θj is a simple eigenangle, then its condition number is d−1
j .5 The condition

number gives perturbation bounds for asymptotically small perturbations. In this section
we derive perturbation bounds for larger perturbations. A common approach to deriving
bounds for larger perturbations from conditioning information is to integrate the condition
number. This approach is satisfactory, though not elegant, when the condition number itself
does not change dramatically. The dj’s however, can change rapidly:

Example 3.1 Let

A =
(

10−4 0
0 0

)

, B =
(

1 0
0 102

)

, E =
(−5 × 10−5 5 × 10−5

5 × 10−5 0

)

, and F = 0.

It is easy to see that (A, B) has d1 = |α1 + iβ1| ≈ 1 and d2 = |α2 + iβ2| = 100. One can

compute d̃1 = |α̃1 + iβ̃1| ≈ 1.01 and d̃2 = |α̃2 + iβ̃2| ≈ 5.10. Thus a change of the order of

5 × 10−5 in the matrices produces a change of the order of 102 in d2.
Our eigenangle bounds are based on the following basic min-max result, which is just

[14, Lemma VI.3.1] with the eigenangles ordered in the opposite order.

Lemma 3.2 Let (A, B) be a definite pair. Then

θj = min
dim(X )=n−j+1

max
x∈X

arg(x∗(A + iB)x) (3.1)

and
θj = max

dim(X )=j
min
x∈X

arg(x∗(A + iB)x). (3.2)

We shall assume throughout this section that A and B are diagonal. This is not a serious
assumption since one can always diagonalize them by an X with unit columns. The same
transformation applied to the perturbations E and F will increase their norms by a factor

of at most ‖X‖2 < n. (See Section 2.4.)

Set r = r(E + iF ). Let Dj denote the disc in the complex plane centered at αj + iβj

with radius r. One might hope for a Gerschgorin-type result stating that the normalized

generalized eigenvalues of (Ã, B̃) are contained in the union of the Dj’s. Example 3.1 shows

that this is not the case6 but these discs do give useful information on the perturbation of
eigenangles.

5This fact can be derived by considering first order perturbation theory and can be extended beyond
the definite generalized eigenvalue problem to the general case generalized eigenvalue problem [14, Section
VI.2.1].

6One can prove a Gerschgorin Theorem for eigenangles as opposed to normalized generalized eigenvalues–
see for example [14, Corollary VI.2.5]. Again, this is not a reason to not use normalized generalized eigen-
values. The bound on eigenangles given by Theorem 3.3 that involves normalized generalized eigenvalues is
actually stronger than a Gerschgorin bound on eigenangles.
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αj + iβj

arg(z) = θj

arg(z) = uj

arg(z) = lj

O

r

dj

Dj

Figure 3: Computation of uj and lj

The disc Dj, see Figure 3, is contained in the wedge

{z : lj ≤ arg z ≤ uj}
where

lj = θj − sin−1(r/dj) (3.3)

uj = θj + sin−1(r/dj). (3.4)

We would like all the discs D1, . . . , Dn to be contained in an open half plane to ensure
that u1, . . . , un, l1, . . . , ln are contained in an interval of length less than π. This is equivalent
to requiring r < c(A, B). Since A and B are diagonal, c(A, B) is easy to compute.

Let us bound the eigenangles θ̃j of (A + E, B + F ). Since A and B are diagonal they

are diagonalized by X = I. Choose j ∈ {1, . . . , n} and let I be any subset of {1, . . . , n}
of cardinality j. Using the min-max theorem for the arguments of the unit generalized
eigenvalues

θ̃j ≥ min
x∈span{xk:k∈I},||x||=1

arg x∗((A + iB) + (E + iF ))x

= min
x∈span{xk:k∈I},||x||=1

arg[x∗(A + iB)x + x∗(E + iF )x]

≥ min{arg(y + z) : y ∈ conv{αk + iβk : k ∈ I}, z ∈ W (E + iF )}
≥ min{arg(y + z) : y ∈ conv{αk + iβk : k ∈ I}, |z| ≤ r(E + iF )}
≥ min{arg w : w ∈ conv ∪k∈I Dk}
= min{lk : k ∈ I}.
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Notice that because the dk’s are not all the same the lk’s are not necessarily in decreasing

order. Order them and call the resulting numbers l↓k. Since the analysis above is valid for
any index set I of cardinality j, we have shown

θ̃j ≥ l↓j .

Let u↓
k denote the ordered uk’s. In the same way we get an upper bound, and hence, we have

the result

Theorem 3.3 Let A = diag(α1, . . . , αn) and let B = diag(β1, . . . , βn). Assume that (A, B)

is a definite pair and that r(E + iF ) < c(A, B). Then θ̃1, . . . , θ̃n, the eigenangles of (A +

E, B + F ), satisfy

u↓
j ≥ θ̃j ≥ l↓j , j = 1, . . . , n. (3.5)

In Example 3.4 later in the section we present an application of this theorem, and show
that it is stronger than a Gerschgorin type theorem.

Notice that the upper and lower bounds u↓
j and l↓j are completely independent of the

Crawford number. The Crawford number appears only in the conditions that ensure the
validity of the bound (3.5).

The bounds in (3.5) certainly are easily computable, and given the αjs and βjs the bounds

would be easily computable in software. However, the l↓k notation hides the roles of the size
of the perturbation and the moduli of the normalized generalized eigenvalues. Here are two
ways to simplify, though slightly weaken, the result and so make it easier to grasp its content.

First suppose that θj is a simple eigenangle. (We discuss the condition number of a

multiple eigenangle in Section 4.) Recall that l↓j and u↓
j , the ordered l’s and u’s, defined in

(3.3-3.4), are functions of r. Let7

rj = max{t : l↓j (r) ≥ lj(r) and u↓
j(r) ≤ uj(r) for all 0 ≤ r ≤ t}.

Then

|θj − θ̃j| ≤ sin−1

(

r(E + iF )

dj

)

, if r(E + iF ) ≤ rj. (3.6)

That is, for perturbations (E, F ) with r(E + iF ) ≤ rj, the perturbation in θj is bounded

by the size of the perturbation multiplied by the condition number. In other words, the
condition number, which is based on purely local information, gives bounds that are valid in
a non-trivial interval.

It is important that the perturbations remain small for 1/dj to give a good measure of

the sensitivity of θj. We will see this and a number of other points in

7It is elementary, though tedious and unenlightening, to give an explicit formula for rj . The key is the
following observation. Suppose that θj > θi and that di < dj . Then for small r, uj(r) > ui(r), but for large
r, uj(r) < ui(r). When are they equal? One can check [19] that they are equal when

r =
didj | sin(θi − θj)|

d2

i + d2

j − 2didj cos(θi − θj)
.
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Example 3.4 Let

A =
(

1 0
0 1000

)

, B =
(

1 0
0 1001

)

, E = 0, F =
(

.1 0
0 0

)

.

Then (A, B) has

θ1 = arctan(1.001), θ2 = arctan(1), d1 =
√

10002 + 10012 ≈ 1.4 × 103, and d2 =
√

2.

Also, r = r(E + iF ) = .1. For (Ã, B̃) = (A + E, B + F ) we have

θ̃1 = arctan(1.1), θ̃2 = arctan(1.001).

So
|θ1 − θ̃1| = 4.7 × 10−2

while r(E + iF )/d1 = 7 × 10−5 is much smaller.

Thus, for perturbations of this size, d−1
1 no longer gives a good estimate of the perturba-

tion of θ1, if fact, d−1
2 gives a better estimate: r(E + iF )/d2 = 7× 10−2. The ill conditioning

of θ2 has infected the better conditioned eigenangle θ1. Stewart and Sun observe that this is
possible [14, Problem VI.3.1, p324]. Earlier Stewart called this phenomenon ill-disposition

[16, pp. 682-686, esp. 685].
Plotting the normalized generalized eigenvalues clarifies what has happened here: The

eigenangles θ1 and θ2 have crossed, and in fact, if we pair θ̃2 with θ1 and θ̃1 with θ2 they do
satisfy the bounds in Theorem 3.3:

|θ̃2 − θ1| = 0 ≤ sin−1(.1/d1), and |θ̃1 − θ2| = .048 ≤ sin−1(.1/d2).

This suggests that the notion of ill-disposition is just an artifact of the labelling of the eige-
nangles. In the next section we show that ill-disposition is indeed real – one ill-conditioned
eigenangle can cause nearby eigenvalues to be very sensitive to perturbations, and that
relabelling eigenangles will not make the problem go away.

Let us compute the bounds on θ̃1 and θ̃2 from Theorem 3.3 in this example. Evaluating
the formulas (3.3-3.4) we get

l1 = 0.785827, u1 = 0.785969, l2 = 0.714628, u2 = 0.856168.

Since u2 is larger than u1 we have u↓
1 = u2 and u↓

2 = u1. Theorem 3.3 tells us that

0.785827 ≤ θ̃1 ≤ 0.856168, and 0.714628 ≤ θ̃2 ≤ 0.785969. (3.7)

(See Figure 4.) There are several points to make about these bounds. Firstly, the intervals

containing θ̃1 and θ̃2 are not of the same length, nor are they symmetric about θ1 and θ2.
One can show that each of these intervals taken individually is the smallest possible interval
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θ̃1 θ̃2

increasing θ

Figure 4: uj and lj related to Example 3.4

containing the relevant θ̃i so any intervals that have the “desirable” properties of being the
same length or symmetric about the θi are necessarily weaker. Secondly, though the intervals

[l1, u1] and [l2, u2] intersect we still get different intervals [l1, u2] and [l2, u1] that contain θ̃1

and θ̃2, so Theorem 3.3 is stronger than a Gerschgorin type bound. Thirdly, the bounds
(3.7) do not preclude

|θ̃1 − θ1| ≈ |u2 − θ1| = 7 × 10−2

and
|θ̃2 − θ2| ≈ |l2 − θ2| = 7 × 10−2.

That is, at this stage we cannot eliminate the possibility that both eigenangles have moved an

amount approximately d−1
2 r(E+iF ). That is, our bounds do not reflect the well conditioned-

ness of θ1. In the next section we will do a more careful, and more complicated, analysis to

show that it is not possible to have both |θ̃1 − θ1| ≈ |u2 − θ1| and |θ̃2 − θ2| ≈ |l2 − θ2|.
A second approach to simplifying the perturbation bound (3.5) is to notice that

l↓k ≥ θk − sin−1 (r/dmin) and u↓
k ≤ θk + sin−1 (r/dmin)

and hence we have

Theorem 3.5 Let A = diag(α1, . . . , αn) and let B = diag(β1, . . . , βn). Assume that (A, B)

is a definite pair and that r(E + iF ) < c(A, B). Then θ̃1, . . . , θ̃n, the eigenangles of (A +

E, B + F ), satisfy

|θj − θ̃j| ≤ sin−1

(

r(E + iF )

dmin

)

. (3.8)

Stewart and Sun [14, p. 303] observed that 1/dj is the condition number of θj – that

is, 1/dj is a measure of θj’s sensitivity to small perturbations. It appears not to have been

observed that 1/dmin is a bound on the sensitivity of the eigenangles for larger perturbations.

Stewart and Sun [14, Corollary VI.3.3] give essentially the same result with dmin replaced

by c(A, B) which is always smaller and can be much smaller – see Example 1.1. They observe

that their results [14, Theorem VI.3.2 and Corollary VI.3.3] are unsatisfactory and that one
would expect the bound to involve dmin – just as ours does. Their result is valid for all
definite pairs, not just diagonal pairs. We drop the diagonality assumption, at the cost of a
factor of n, in Corollary 3.6 and obtain the bound (3.9).
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Corollary 3.6 Assume that (A, B) is a definite pair and that X has unit columns and is
such that

X∗(A + iB)X = diag(α1 + iβ1, . . . , αn + iβn).

Assume further that

r(E + iF )‖X‖2 < c( diag(α1, . . . , αn), diag(β1, . . . , βn) ).

Then θ̃1, . . . , θ̃n, the eigenangles of (A + E, B + F ), satisfy

|θj − θ̃j| ≤ sin−1

(

‖X‖2r(E + iF )

dmin

)

≤ sin−1

(

nr(E + iF )

dmin

)

. (3.9)

4 Multiple and Clustered Eigenangles

We have seen that the condition number of a simple eigenangle θj is just d−1
j . We have also

seen that if there is an ill-conditioned eigenangle θk, with condition number d−1
k , close to θj,

then the ill-conditioned eigenangle makes the eigenangle θj sensitive to perturbations that

are (loosely speaking) larger that dk| sin(θj − θk)|. Let us see what happens when we have a

multiple eigenangle.

4.1 Typical perturbations

Consider

Example 4.1

A =
(

2 0
0 2000

)

, B =
(

1 0
0 1000

)

.

This pair has a repeated eigenangle θ = arctan(1/2). The normalized generalized eigenvalues

are not uniquely determined, but we may take them to be (2 + i) and 1000(2 + i). When
the pair is subjected to random perturbations of norm about .1, one of the two resulting

eigenangles differs from θ by about .1, while the other differs by about .1 × 10−3. Thus it

would seem that d−1
1 ≈ 1 and d−1

2 ≈ 10−3 are a good indication of the sensitivity of the
repeated eigenangle θ. The problem of understanding this phenomenon was mentioned as
an open research problem by Stewart and Sun [14, p. 300]. We first show that the issue is
more complicated that it appears, and then we explain it.

Take the carefully chosen, non-random perturbations

E =
2√
5

(

0 .1
0 .1

)

, F = − 1√
5

(

0 .1
0 .1

)

(r(E + iF ) = .1). (4.1)

This gives two eigenangles π/4 ± 10−3. That is, the perturbations in the eigenangles are

both of size 10−3 =
√

10−1 ∗ 10−3r(E + iF ), rather than one being r(E + iF ) = 10−1 and
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the other being 10−3r(E + iF ) = 10−4. The perturbation (4.1) is a worst case perturbation,
rather than a “typical perturbation”. We analyze worst case perturbations in the next sub-
section, where we also give a more dramatic example of the difference between worst case
perturbations and average case perturbations (Example 4.2).

First consider the simple case where all the eigenangles of the definite pair (A, B) are

identical. Since we may rotate the pair (A, B) and thereby rotate its eigenangles also,

we may assume without loss of generality that all the eigenangles of (A, B) are π/2, or
equivalently that their cotangents are 0, which in turn is equivalent to A = 0. Recall that
the cotangents of the eigenangles are the generalized eigenvalues of the problem Ax = λBx,

which are the eigenvalues of the Hermitian matrix B−1/2AB−1/2. If φ is close to π/2 then

| cot(φ)| ≈ |π/2 − φ|. Thus, for small perturbations of the eigenangles, the perturbation of
eigenangles is approximately the same as that of their cotangents. In this section we will
look at the perturbation of the cotangents of the eigenangles, that is, the eigenvalues of

B−1/2AB−1/2.
Since A = 0 we may diagonalize the pair (A, B) by a unitary similarity, so assume, without

further loss of generality that B is diagonal, and that its diagonal entries are d1 ≤ d2 ≤ · · · ≤
dn, with d1 > 0. The cotangents of the eigenangles of the pair (A + E, B + F ) = (E, B + F )

are the eigenvalues of (B + F )−1/2E(B + F )−1/2, which are the same as those of

C = (I + B−1/2FB−1/2)−1/2(B−1/2EB−1/2)(I + B−1/2FB−1/2)−1/2, (4.2)

since

B + F = B1/2(I + B−1/2FB−1/2)B1/2

= [(I + B−1/2FB−1/2)1/2B1/2]∗[(I + B−1/2FB−1/2)1/2B1/2].

Ostrowskii’s inequality [8, Theorem 4.5.9] tells us

λmin(I + B−1/2FB−1/2) ≤ λi(C)

λi(B−1/2EB−1/2)
≤ λmax(I + B−1/2FB−1/2) (4.3)

and hence

1 − ‖B−1‖‖F‖ ≤ λi(C)

λi(B−1/2EB−1/2)
≤ 1 + ‖B−1‖‖F‖. (4.4)

We expect F to be small, so we shall analyze the eigenvalues of B−1/2EB−1/2 and then
use (4.4) to convert the results to information on the eigenvalues of C. If for example,

r(E+iF ) < dmin/2, then since ‖F‖ ≤ r(E+iF ), the bound (4.4) tells us that the eigenvalues

of C and B−1/2EB−1/2 differ by a factor of at most 2. We are now left with the problem of

understanding the eigenvalues of the symmetric matrix B−1/2EB−1/2.

Notice that if the dj’s vary greatly in magnitude, then B−1/2EB−1/2 will be a graded

or block graded matrix. Stewart and Zhang have looked at a very similar problem. They
explained why, in the non-symmetric eigenvalue problem, it may happen that a multiple
eigenvalue, may split into several eigenvalues that lie at different distances from the original
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eigenvalue. These distances are, they show, “more a characteristic of the matrix than of
the perturbation”. They have presented an admirable explanation as to why typically the

magnitudes of the eigenvalues of B−1/2EB−1/2 will be of the order of

d−1
1 ‖E‖ ≥ d−1

2 ‖E‖ ≥ · · · ≥ d−1
n ‖E‖. (4.5)

Their results are more precise than this, and they give conditions, that guarantee that this
“typical” behavior actually occurs. Their conditions involve certain Schur complements of
E [18, Sections 2 and 3]. Since E is the perturbing matrix the conditions describe the
perturbations that result in “typical behavior”. This typical behavior occurs provided that
certain cancellations do not occur, and hence the name “typical” is appropriate.

Let θ̃i denote the eigenangles of (A+E, B +F ), ordered in decreasing distance from π/2,
then the results of Stewart and Zhang imply that for typical small perturbations

|θ̃j − π/2| is of the order of dj‖E‖. (4.6)

Following Stewart and Zhang we may call the numbers

d−1
1 , d−1

2 , · · · , d−1
n (4.7)

the “(typical) condition numbers of the multiple eigenangle θ”, with the understanding that
they represent the typical size of perturbations of the multiple eigenangle θ. Notice that
we are not saying that the second furthest eigenangle from θ will differ from θ by at most

a moderate multiple of d−1
2 r(E + iF ), it could well differ by much more, as we will see in

Example 4.2.

4.2 Worst case perturbation of a cluster

We begin with a example where the typical behavior does not occur.

Example 4.2 Take

A = 0, B =
(

1 0
0 106

)

, E =
(

0 10−6

10−6 0

)

, F = 0.

The eigenangles of (A, B) are both θ = π/2. The eigenangles of (A + E, B + F ) = (E, B)
are the arc-cotangents of the eigenvalues of

B−1/2EB−1/2 =
(

0 10−9

10−9 0

)

that is, cot−1(±10−9) ≈ π/2 ± 10−9.

Thus, the two eigenangles of (A + E, B + F ) both differ from the multiple eigenangle of

(A, B) by about 10−9 =
√

1 · 10−6 × ‖E‖ rather than by the “typical” 1 · ‖E‖ = 10−6 and

10−6‖E‖ = 10−12. In particular, the closest eigenangle of (A + E, B + F ) to π/2 is much

further than 10−12 from π/2.

Since (A, B) above has repeated eigenangles, this example does not, strictly speaking,
illustrate ill-disposition. A slight perturbation of it does. Consider
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Example 4.3

A =
(

0 0
0 10−12

)

, B =
(

1 0
0 106

)

, E =
(

0 10−6

10−6 −10−12

)

, F = 0.

So let us now address worst case perturbation bounds. We will consider the case when
the pair (A, B) has all its eigenangles in a tight cluster. This includes the case where (A, B)
has only a single eigenangle. From the preceding analysis one sees that one needs to bound

the absolute values of the eigenvalues of B−1/2EB−1/2 when E = E∗ and B is diagonal. We
give a simple partial answer as to what is the best bound on the kth largest eigenvalue (in

absolute value) of B−1/2EB−1/2.

Proposition 4.4 Let E = E∗ have norm at most 1. Let B = diag(d1, . . . , dn), where the

di are diagonal are positive and in increasing order. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| denote

the ordered absolute values of the eigenvalues of B−1/2EB−1/2. (In fact, |λk| is just the kth

singular value of B−1/2EB−1/2). Then we have the two bounds

|λk| ≤




k
∏

j=1

d−1
j





1/k

, (4.8)

and

|λk| ≤
(

(n − k + 1)d−1
1 d−1

k

)1/2
. (4.9)

Proof Let λj(E), j = 1, . . . , n be the eigenvalues of E, also ordered in decreasing absolute

value. In other words, |λj(E)| is just the jth largest singular value of E, |λj| is the jth largest

singular value of B−1/2EB−1/2. The singular values of E are at most ‖E‖ = 1 in absolute

value. Thus, the standard product inequality for singular values due to A. Horn (see, e.g.,

[9, Theorem 3.3.4]) yields

|λk|k ≤
k
∏

j=1

|λj| ≤
k
∏

j=1

|λj(E)|d−1
j ≤

k
∏

j=1

d−1
j

hence

|λk| ≤




k
∏

j=1

d−1
j





1/k

,

which is (4.8).

Now consider (4.9). The j-th column of B−1/2EB−1/2 has norm at most (d−1
j d−1

1 )1/2.

Thus for any unit vector x with first k − 1 entries 0 we must have

‖B−1/2EB−1/2x‖ ≤
√

n − k + 1(d−1
1 d−1

k )1/2,

and the bound (4.9) now follows from min-max. 2
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Sometimes the bound (4.8) is stronger, while sometimes (4.9) is. When k = 2 the two
bounds are identical, and the example we presented shows that they are attainable.

The second ingredient of our analysis of the worst case perturbation of a multiple eige-
nangle is the following simple perturbation bound for Hermitian matrices.

Lemma 4.5 Let A and E be Hermitian matrices. Let ηi, i = 1, . . . , n be the eigenvalues of
E, ordered so that |η1| ≥ |η2| ≥ · · · ≥ |ηn|. Then at most k − 1 eigenvalues of A + E lie
outside the interval

[λmin(A) − |ηk|, λmax(A) + |ηk|].
Proof Let E =

∑n
i=1 ηixix

∗
i be a spectral decomposition of E. We will decompose E as

a sum of two matrices – one with norm |ηk| and one with rank at most k − 1 as follows. For
i < k, let

η̃i = sign(ηi)|ηk|, and η̂i = ηi − η̃i.

The E = E1 + E2 where

E1 =
n
∑

i=1

η̃ixix
∗
i , and, E2 =

k−1
∑

i=1

η̂ixix
∗
i .

Since ‖E1‖ = |ηk|, all the eigenvalues of A + E1 lie in

[λmin(A) − |ηk|, λmax(A) + |ηk|], (4.10)

and since E2 has rank at most k − 1, at most k − 1 eigenvalues of (A + E1) + E2 lie outside

the interval (4.10). 2

We can now give worst case bounds on the perturbation of a cluster of eigenangles.

Theorem 4.6 Let the definite pair (A, B) have all its eigenangles in the interval

[π/2 − θ̄1, π/2 + θ̄1].

Let X be such that

X∗AX = diag(α1, . . . , αn), and X∗BX = diag(β1, . . . , βn)

and β1 ≤ · · · ≤ βn. Let (E, F ) be a perturbation such that

r(E + iF ) < c(A, B). (4.11)

Then at most k − 1 eigenangles of (A + E, B + F ) lie outside

[π/2 − θ̄2, π/2 + θ̄2],

where

θ̄2 = arctan

(

tan(θ1) + εk‖X‖2‖E‖
1 − ‖X‖2‖F‖β−1

1

)

and

εk = ‖X‖2 min















k
∏

j=1

β−1
j





1/k

,
(

(n − k + 1)β−1
1 β−1

k

)1/2











.
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Proof The eigenangles of (A + E, B + F ) are the same as those of (DA + Ẽ, DB + F̃ )

where Ẽ = X∗EX and F̃ = X∗FX . The condition (4.11) ensures that (A, B) is definite

and hence so is (DA + Ẽ, DB + F̃ ). By Lemma 4.5 at most k−1 eigenvalues of the Hermitian

matrix D
−1/2
B (DA + Ẽ)D

−1/2
B lie outside the interval

[−(tan(θ1) + εk‖X‖2‖E‖), (tan(θ1) + εk‖X‖2‖E‖)].

This fact together with Ostrowskii’s Inequality (4.4) tells us that at most k − 1 eigenvalues
of the Hermitian matrix

(DB + F̃ )−1/2(DA + Ẽ)(DB + F )−1/2 =

(I + D
−1/2
B F̃D

−1/2
B )D

−1/2
B (DA + Ẽ)D

−1/2
B (I + D

−1/2
B F̃D

−1/2
B )−1/2

lie outside the interval
[

−tan(θ1) + εk‖X‖2‖E‖
1 − ‖F̃‖β−1

1

,
tan(θ1) + εk‖X‖2‖E‖

1 − ‖F̃‖β−1
1

]

.

Converting this to a bound on eigenangles and bounding ‖F̃‖ by ‖X‖2‖F‖ gives the desired
result. 2

Since the preceding result is a worst case bound we have taken pains to give a precise
bound – complete with complications. However, the interpretation of this result is straight-

forward. Typically we would apply this theorem with θ̄1 and (E, F ) both small so that

βi ≈ di, 1− ‖X‖2‖F‖β−1
1 ≈ 1 and tan(θ1) ≈ θ1. Thus, θ2 ≈ θ1 + εk‖X‖2‖E‖, and the worst

case perturbation of eigenangles in the cluster is bounded in terms of εk.
Theorem 4.6, as stated, is very specialized but it can easily be applied to the general

case of pair that has a cluster of k < n eigenangles around θ 6= π/2 as well as n − k other
eigenangles.

Since we can rotate the pair (A, B) we may apply the result for values of θ other than

θ = π/2. This rotation will result in a change in ‖E‖ and ‖F‖, so in this case replace these

quantities by r(E + iF ), r(E + iF ) which are rotation invariant and larger. (See Section 2

for a discussion of the rotation a pair.)

Now suppose that (A, B) has a cluster of eigenangles around θ and also other eigenangles
well separated from θ. This case can be reduced to the case of a single cluster by block
diagonalizing the pair by congruence. This will increase the norm of the perturbation by a
factor of at most 2.

4.3 Ill-disposition

What can we say about ill-disposition–the phenomenon where an ill conditioned eigenangle
causes other nearby eigenangles to be sensitive to perturbations? For simplicity let us assume
that the definite pair has eigenangles θj 6= θk that are close to each other and that these two

are simple and are well separated from the other eigenangles. Let us assume that d−1
j , the

condition number of θj is small, but that d−1
k , the condition number of θk is large. How can

the ill-conditioning of θk affect the sensitivity of θj?
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1. We have seen in (3.6), that provided r(E+iF ) < rj, the sensitivity of θj depends solely

on d−1
j . One can check that if ε ≥ rj then there is a perturbation E + iF such that

r(E + iF ) ≤ ε and the jth eigenangle is multiple. So, ill-disposition can only occur if
the perturbation is large enough to allow θj to merge with another eigenangle.

2. However, once we have a multiple eigenangle, we have seen that the quantities d−1
j

and d−1
k are the “typical condition numbers”, measuring the sensitivity of the multiple

eigenangle to “typical” perturbations (4.6). So even in this case we will not typically
observe the effects of ill-disposition. Sometimes, as in Example 3.4, it is necessary to

reorder the eigenangles in order to have the perturbations of the order of d−1
j r(E+ iF ).

3. Examples 4.2 and 4.3 show that it is possible to construct a particularly bad perturba-

tion so that both θj and θk are more sensitive than the condition number d−1
j suggests.

However, the bound on εk in Theorem 4.6 shows that the sensitivity of the less sensitive
eigenangle is at most

√

d−1
j d−1

k not d−1
k .

In short, for small perturbations and “typical” perturbations, d−1
j and d−1

k measure the

sensitivity of the eigenangles. Even in the worst case, at least one eigenangle has sensitivity

bounded by
√

d−1
j d−1

k . In Stewart’s words “it is possible to overemphasize the effects of

ill-disposition” [16, p. 685].

5 Quadratic Eigenangle bounds

It is well known that if λ is a simple eigenvalue of a diagonal matrix then off-diagonal
perturbations of the matrix cause only quadratically small perturbations in the eigenvalue.
This has been quantified in the case of the Hermitian eigenvalue problem [17, 12]. We shall

use the basic Schur complement method used in [12]: That is, assuming that X is invertible,
the Hermitian matrices

(

X Y
Y ∗ Z

)

and
(

X 0
0 Z − Y ∗X−1Y

)

are congruent, and hence have the same inertia. To see that they are congruent compute

(

I −X−1Y
0 I

)∗ ( X Y
Y ∗ Z

)(

I −X−1Y
0 I

)

=
(

X 0
0 Z − Y ∗X−1Y

)

. (5.1)

Let

A = diag(d1 cos(θ1), . . . , dn cos(θn)), and B = diag(d1 sin(θ1), . . . , dn sin(θn)).
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We do not assume that the θi are ordered. Let A = A11 ⊕A22 and B = B11 ⊕B22 where A11

and B11 are both m × m. Let

E =
(

0 RA

R∗
A 0

)

and F =
(

0 RB

R∗
B 0

)

where RA and RB are m×(n−m). Let us relate the eigenangles of (A, B) and (A+E, B+F ).

Let θ be different from θi, for i = 1, . . . , m. Let s = sin(θ) and c = cos(θ). Then, by

(5.1), s(A + E) − c(B + F ) is congruent to

(

sA11 − cB11 0
0 sA22 − cB22 − (sRA + cRB)∗(sA11 − cB11)

−1(sRA + cRB)

)

,

which we may write as

(

sA11 − cB11 0
0 sA22 − cB22 − Q22(θ)

)

=
(

sA11 − cB11 0
0 s(A22 − sQ22(θ)) − c(B22 + cQ22(θ))

)

,

where
Q22(θ) = (sRA + cRB)∗(sA11 − cB11)

−1(sRA + cRB).

Set

Q(θ) =
(

0 0
0 Q22(θ)

)

.

and
∆1(θ) = min{|di sin(θi − θ)| : i = 1, . . . , m.}.

Note that since Q(θ) is Hermitian

r(− sin(θ)Q(θ) + i cos(θ)Q(θ)) = r(e−iθQ(θ)) = ‖Q(θ)‖, (5.2)

and that

‖Q(θ)‖ = ‖Q22(θ)‖
≤ ∆−1

1 (θ)‖ sin(θ)RA + cos(θ)RB‖2

= ∆−1
1 (θ)‖ sin(θ)E + cos(θ)F‖2

≤ ∆−1
1 (θ)r2(E + iF ). (5.3)

We have used (2.2) for the last inequality.

In short, sin(θ)(A + E) − cos(θ)(B + F ) is congruent to

sin(θ)[A − sin(θ)Q(θ)] − cos(θ)[B + cos(θ)Q(θ)].

Thus if θ is an eigenangle of (A + E, B + F ) it is also an eigenangle of

( [A − sin(θ)Q(θ)] , [B + cos(θ)Q(θ)] ),
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and so θ differs from an eigenangle of (A, B) by O(‖Q(θ)‖), which is quadratic in r(E+ iF ).8

This basic idea has been exploited in a number of ways in the context of the Hermitian
eigenvalue problem in [12]. It was easier to exploit the idea in the context of the Hermitian

eigenvalue problem because there every eigenvalue is equally well conditioned (in fact, with

condition number 1!), and the condition number bounded the sensitivity of both small and
large perturbations. Neither of these features is present in the generalized eigenvalue problem
– even if we assume definiteness. It is because of these complications that we state only the
simplest possible quadratic perturbation bound and do not pursue the generalizations that
were relatively straightforward in [12].

If we assume definiteness then there is a natural ordering of the eigenangles and so we

can specify which eigenangle of (A, B) is close to the eigenangle θ̃ of (A + E, B + F ).

Theorem 5.1 Let

A = diag(d1 cos(θ1), . . . , dn cos(θn)), and B = diag(d1 sin(θ1), . . . , dn sin(θn)).

Let

E =
(

0 RA

R∗
A 0

)

and F =
(

0 RB

R∗
B 0

)

where RA and RB are m × (n − m). Assume that (A, B) is a definite pair. Fix k and let θk

(respectively, θ̃k) be the kth eigenangle of (A, B), (respectively, (A + E, B + F )). Define

∆1(θ̃k) ≡ min{|dj sin(θj − θ̃k)| : j = 1, . . . , m.},

and
dmin,2 ≡ min{dj : j = m + 1, . . . , n}.

Assume
∆1(θ̃k) > 0, and r2(E + iF )∆−1

1 (θ̃k) < c(A, B).

Then

|θk − θ̃k| ≤ sin−1

(

r2(E + iF )

∆1(θ̃k) · dmin,2

)

. (5.4)

Proof Let s = sin(θ̃k) and c = cos(θ̃k). We have seen above that s(A + E) − c(B + F )
is congruent to

s[A − sQ(θ̃k)] − c[B + cQ(θ̃k)].

Since the kth eigenangle of (A + E, B + F ) is θ̃k it follows that the kth eigenvalue of s(A +

E) − c(B + F ) is 0, and so by congruence, the kth eigenvalue of

s(A − sQ(θ̃k)) − c(B + cQ(θ̃k))

8Notice that so far we have not required that B be positive definite.
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is also 0, whence it follows that the kth eigenangle of the pair

(A − sQ(θ̃k), B + cQ(θ̃k))

is θ̃k. Now, since Q is 0 except for the 2, 2 block, it follows from (a very slight modification

of) Theorem 3.5 that every eigenangle, and in particular the kth eigenangle, of the pair

(A − sQ(θ̃k), B + cQ(θ̃k)) is within

sin−1

(

r(sQ(θ̃k) − icQ(θ̃k))

dmin,2

)

= sin−1

(

r(Q(θ̃k))

dmin,2

)

of the corresponding eigenangle of (A, B). The asserted bound (5.4) follows from this and

the bound (5.3) we have on Q. 2

We could have permuted the blocks of A and B and so exactly the same result is valid
with

∆1(θ̃k) ≡ min{|dj sin(θj − θ̃k)| : j = m + 1, . . . , n.},
and

dmin,2 ≡ min{dj : j = 1, . . . , m}.

6 Eigenvector perturbation

In this section we look at eigenvector perturbation, and we do not assume that the eigenangles
are ordered. Recall that in (1.5) we defined

δj(θ) ≡ dj sin(θ − θj).

We begin with the diagonal case.

Theorem 6.1 Suppose that

A = diag(d1 cos θ1, . . . , dn cos θn) and B = diag(d1 sin θ1, . . . , dn sin θn),

that (Ã, B̃) = (A, B) + (E, F ) and that sin(θ̃)Ã − cos(θ̃)B̃ is singular for some θ̃ ∈ R. Let

∆ = min{|δl(θ̃)|, l 6= j}.

and assume that
r(E + iF ) < ∆. (6.1)

Let w ∈ Cn−1 denote the jth column of cos(θ̃)E + sin(θ̃)F with its j-th element deleted.

Then there is a vector v ∈ Cn with vj = 1 that is an eigenvector (not-necessarily unit)

corresponding to θ̃ for which we have the norm bound

‖v − ej‖ ≤ ∆−1

1 − ∆−1r(E + iF )
‖w‖ ≤ ∆−1

1 − ∆−1r(E + iF )
r(E + iF ), (6.2)
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and, for k 6= j, the entry-wise bound

|vk| ≤ |δ−1
k (θ̃)|

(

|wk| +
∆−1r(E + iF )

1 − ∆−1r(E + iF )
‖w‖

)

(6.3)

≤ |δ−1
k (θ̃)|

(

√

|ekj|2 + |fkj|2 +
∆−1r(E + iF )

1 − ∆−1r(E + iF )
r(E + iF ).

)

(6.4)

We have included the intermediate bounds in terms of w because in Theorem 6.3 we
deduce a bound in the general non-diagonal case from the diagonal case, i.e., Theorem 6.1.
By using the intermediate bound rather than the right hand bound in (6.2) the bound in

Theorem 6.3 contains ‖X‖, not ‖X‖2.

There are two points to note about this result. First, we do not require that (A+E, B+F )
is definite. Second, since vj = 1 we know that v − ej is orthogonal to the unit vector ej.

Consequently, (6.2) implies the “tan θ” bound:

| tan θ(ej, v)| = ‖v − ej‖ ≤ ∆−1

1 − ∆−1r(E + iF )
‖w‖. (6.5)

Proof We prove the result in the case j = n. The general case can be reduced to this by

permuting rows and columns. Let
(

p
1

)

with p ∈ Cn−1 be a (non-unit) eigenvector associated

with the eigenangle θ̃. We will prove the existence of such an eigenvector at the end of the
proof: For the time being let us assume it.

Only in this proof, for any matrix Y , we shall let Y1 denote the matrix obtained from Y

by removing its last row and last column. Set D1 = sin(θ̃)A1 − cos(θ̃)B1 (we use D1 rather

than D̃1 for simplicity of notation). Then, since A and B are diagonal,

D1 = diag(δ1(θ̃), . . . , δn−1(θ̃)), and ‖D−1
1 ‖ = ∆−1.

Let R = sin θ̃E1 − cos θ̃F1. Let w be the last column of sin θ̃E − cos θ̃F without the last
entry. The first n − 1 rows of the condition

(sin θ̃Ã − cos θ̃B̃)
(

p
1

)

= 0 ∈ IRn

are
w + D1p + Rp = 0 ∈ IRn−1, (6.6)

which yields the exact expression for p:

p = D−1
1 (I + RD−1

1 )−1w. (6.7)

Now, using (2.2) and (2.4), we have

‖R‖ = ‖ cos(θ̃)E1 + sin(θ̃)F1‖ ≤ r(E1 + iF1) ≤ r(E + iF ).
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Thus taking norms in (6.7) we get the left-hand bound in (6.2). To obtain the right hand

bound we need only show ‖w‖ ≤ r(E + iF ). Let e and f denote the last columns of E and

F with their last entries deleted. Using (2.2) and (2.5), we have

‖w‖ =
∥

∥

∥

∥

(

0 w
w∗ 0

)∥

∥

∥

∥

=
∥

∥

∥

∥

cos(θ̃)
(

0 e
e∗ 0

)

+ sin(θ̃)
(

0 f
f ∗ 0

)∥

∥

∥

∥

≤ r
((

0 e
e∗ 0

)

+ i
(

0 f
f ∗ 0

))

≤ r(E + iF )

For the entry-wise bound we write (6.7) as

p = D−1
1 (I +

∞
∑

m=1

(−RD−1
1 )m)w = D−1

1 w + D−1
1 (

∞
∑

m=1

(−RD−1
1 )mw). (6.8)

The kth component of this is vector is at most

|δ−1
k (θ̃)| |wk| + |δ−1

k (θ̃)| ‖RD−1
1 ‖

1 − ‖RD−1
1 ‖‖w‖. (6.9)

By Cauchy-Schwarz,

|wk| = | cos(θ̃)ekn + sin(θ̃)fkn| ≤
√

|ekn|2 + |fkn|2.

The asserted entry-wise bounds (6.3) and (6.4) follow from (6.9) and our bounds on D−1
1 ,

R, |wk|, and ‖w‖.
Finally, let us prove that there is an eigenvector of the form (pT 1)T corresponding to θ̃.

Let (pT t)T be an eigenvector corresponding to θ̃. If we can show that t must be non-zero
then we may divide the vector by it and get an eigenvector with nth component 1. The
proof is by contradiction. If t were 0 then the condition

(sin θ̃Ã − cos θ̃B̃)
(

p
t

)

= 0

would imply
D1p + Rp = 0 (6.10)

that is, that (D1 −R) is singular. However we know that it is not singular. To see this note

that (6.1) gives ∆ − r(E + iF ) > 0, and hence, 0 6∈ W (D1 − R). 2

Note that in addition to deriving the rigorous perturbation bounds (6.2) and (6.4) we

have an exact expression for the perturbation in (6.7).
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When E and F are sufficiently small the bounds (6.2) and (6.4) assume the asymptotic
form

‖v − (eT
j v)ej‖ <∼ max{|δ−1

k (θj)|, k 6= j}r(E + iF ) (6.11)

and

|vk| <∼ |δ−1
k (θj)|

√

|ekj|2 + |fkj|. (6.12)

The exact expression (6.7) tells us that the coefficients max{|δ−1
k (θj)|, k 6= j} and |δ−1

k (θj)|
in (6.11) and (6.12) are the best possible. In particular, if the jth eigenangle is simple then
the condition number for jth unit eigenvector is

1

min{|δk(θj)| : k 6= j} =
1

min{dj sin(|θj − θk|) : k 6= j} . (6.13)

The condition number of the eigenvectors, even in the diagonal case, in the generalized

eigenvalue problem has not been explicitly determined before9. The quantity in (6.13) in-
volves both the separation of θj from the other eigenangles and the magnitudes of the other

normalized generalized eigenvalues, taken together. Usually authors have, in effect, indepen-
dently measured the separation of θj from the other eigenangles (using some kind of gap),

and then the minimum of the magnitudes of the other normalized generalized eigenvalues

(using the Crawford number, min{dk : k 6= j}, or ‖B−1‖), and finally combined them to

give an upper bounds on the condition number, see for example [14, Theorems 3.7-3.10] [1,

p 59, first eigenvector bound]. From the form of (6.13) one can see that it is not possible

to compute, or even estimate to within a constant factor, the condition number (6.13) using
only the separation and the minimum magnitude.

The quantity |δk(θj)| = dk| sin(θj − θk)| is not symmetric in j and k, and so the eigenvec-

tors corresponding to two close eigenangles may, perhaps surprisingly, have different condi-
tion numbers. Suppose that

δj2(θj1) = min{|δk(θj1)| : k 6= j1},

that is, the eigenvalue (αj2, βj2) is the closest eigenvalue to the line in the “direction” θ1, and

conversely, suppose also that,

δj1(θj2) = min{|δk(θj2)|, k 6= j2}.

Then the unit eigenvectors corresponding to θj1 and θj2 have condition numbers

|δj2(θj1)|−1 = (dj2| sin(θj1 − θj2)|)−1,

and
|δj1(θj2)|−1 = (dj1| sin(θj1 − θj2)|)−1

9The statement on [14, p. 322] about a condition number is not strictly correct, the quantity Stewart
and Sun give is an upper bound on the condition number, and we show in Section 7 that it can over estimate
the true condition number by an arbitrarily large factor.
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respectively. Since dj1 is not necessarily the same as dj2 these two condition numbers are not

necessarily the same. Let us assume that dj1 < dj2. The unit eigenvector corresponding to

the eigenangle θj2 is better conditioned than the unit eigenvector corresponding to θj1 , even

though the eigenangle θj1 is better conditioned that θj2 . Actually, one should not expect

a connection between the conditioning of the eigenangle and the eigenvector since, asymp-
totically, the eigenangle is changed only by diagonal perturbations, while the eigenvector is
changed only by off-diagonal perturbations. Here is an example:

Example 6.2 Let

A =
(

1 0
0 1000

)

, B =
(

1 0
0 1001

)

, E = 0, F =
(

0 10−4

10−4 0

)

.

Then for (A, B) we have

α1 + iβ1 = 1 + i, α2 + iβ2 = 1000 + 1001i, d1 =
√

2 = 1.4142, d2 = 1414.9.

The pair (A, B) is diagonalized by X = I while (A + E, B + F ) is diagonalized by

X̃ =
(

1 −.099501
9.9999 × 10−5 0.99504

)

.

In this example

|δ2(θ1)|−1 = |d2 sin(θ1 − θ2)|−1 = 1.4,

|δ1(θ2)|−1 = |d1 sin(θ1 − θ2)|−1 = 1.4 × 103.

Thus the first generalized eigenvector is better conditioned than the second. Since the size

of the perturbation is r(E + iF ) = 10−4 one would expect the perturbation in the first

normalized generalized eigenvector to be about 1.4 × 10−4, it is in fact about 10−4, and the

perturbation in the second normalized generalized eigenvector to be about 1.4 × 10−1, it is

in fact about 10−1.
Demmel has observed that the condition number for a problem is often proportional

to the inverse of the norm of the smallest perturbation that makes the problem ill-posed
[4]. Let us consider the condition number κ for the problem of computing the eigenvector

corresponding to αj + iβj = deiθ, still assuming that A and B are diagonal. The problem

of computing an eigenvector is ill-posed if the eigenangle is not simple. Our analysis shows
that the condition number is

(min{r(E + iF ) : θ is a multiple eigenangle of (A + E, B + F )})−1 (6.14)

and not the apparently similar, but potentially much larger quantity

(min{r(E + iF ) : the jth eigenangle of (A + E, B + F ) is multiple})−1 . (6.15)
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The difference is that in (6.14) the jth eigenangle is held fixed at θ and one must move one

of the other eigenangles to θ, while in (6.15) one is free to move the jth eigenangle also. The
difference between these two quantities can be large if θj is ill-conditioned, but the other

nearby eigenangles are not. Demmel’s principle, while still applicable, must be carefully
interpreted here.

Now consider the general, non-diagonal case. The bounds contain ‖X‖2, which we may
not know. In this case replace it by the larger quantity n.

Theorem 6.3 Let (A, B) be a definite pair and suppose that X ∈ Mn has linearly indepen-
dent unit columns and

X∗(A + iB)X = diag(α1 + iβ1, . . . , αn + iβn).

Suppose that (Ã, B̃) = (A, B)+(E, F ) and that sin(θ̃)Ã−cos(θ̃)B̃ is singular for some θ̃ ∈ R.
Let

∆ = min{|δl(θ̃)| : l 6= j}
and assume that

‖X‖2r(E + iF ) < ∆.

Then there is a vector v ∈ Cn that is an eigenvector (not-necessarily unit) corresponding to

θ̃ for which we have the norm bound

‖v − Xj·‖ ≤ ∆−1

1 − ∆−1‖X‖2r(E + iF )
‖X‖2 r(E + iF ). (6.16)

Proof We know from Theorem 6.1 (the left hand bound in (6.2)) that the pair

(X∗ÃX, X∗B̃X) = (diag(α1, . . . , αn) + X∗EX, diag(β1, . . . , βn) + X∗FX)

has an eigenvector u, corresponding to θ̃, such that

‖u − ej‖ ≤ ∆−1

1 − ∆−1r(X∗(E + iF )X)
‖w‖ (6.17)

where w is the jth column of X∗(cos(θ̃)E + sin(θ̃)F )X with its jth entry deleted. So,

‖w‖ ≤ ‖[X∗(cos(θ̃)E + sin(θ̃)F )X]j·‖
≤ ‖X∗(cos(θ̃)E + sin(θ̃)F )‖ ‖Xj·‖
= ‖X∗(cos(θ̃)E + sin(θ̃)F )‖
≤ ‖X∗‖‖ cos(θ̃)E + sin(θ̃)F‖
≤ ‖X‖r(E + iF ), (6.18)
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again using (2.2) for the last inequality. Now note that Xej = Xj·, while v = Xu is an

eigenvector corresponding to θ̃. The asserted bound (6.16) follows from (6.17) the bound

(6.18) and ‖X(ej − u)‖ ≤ ‖X‖‖ej − u‖. 2

Let us derive a “sin θ” theorem. Let P denote the projection onto Xj· and let y = Xj·+Pv.

The vector Xj· − v = X(ej − u) is not necessarily orthogonal to Xj· so we cannot deduce a

tan θ bound from (6.16), but we still have that Xj· is a unit vector, and so (6.16) yields the

“sin θ” bound

| sin θ(Xj·, v)| ≤ ‖v − Xj·‖ ≤ ∆−1

1 − ∆−1‖X‖2r(E + iF )
‖X‖2r(E + iF ).

Let us compare our bound (6.16) with [14, Chapter 6, Theorem 3.8 ] asserting that

‖p‖ ≤
√

‖E‖2 + ‖F‖2

δc(Ã, B̃)
, (6.19)

where
δ = min{| sin(θ1 − θ̃j)| : 2 ≤ j ≤ n} > 0.

To first order in ‖E + iF‖, the right hand side of our bound (6.16) is

1

∆
· ‖X‖2 · r(E + iF ), (6.20)

while the right hand side of (6.19) is

1

δc(A, B)
· (‖E‖2 + ‖F‖2)1/2. (6.21)

(Note that r(E + iF ) ≤ ‖E‖ + ‖F‖ ≤
√

2(‖E‖2 + ‖F‖2)1/2.) The major difference be-

tween these two quantities (6.20) and 6.21 is that we have ∆ instead of δc(A, B). This is a
potentially huge improvement since

δc(A, B) ≤ δdmin ≤ ∆

and the ratios
δc(A, B)

δdmin

=
c(A, B)

dmin

, and
δdmin

∆

can be arbitrarily close to 0 – even in the 2×2 case. We see this for the first ratio in Example
1.1. For the second ratio consider Example 6.4 below. Note that when the perturbation is
small, taking j = 1 for ease of comparison,

δ ≈ min{| sin(θ1 − θj)| : 2 ≤ j ≤ n}

and
∆ ≈ min{|dj sin(θ1 − θj)| : 2 ≤ j ≤ n}.
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Example 6.4 Take ε > 0. Let

A =
(

0 0
0 1

)

, B =
(

ε 0
0 1

)

.

Then
min{| sin(θ1 − θj)| : 2 ≤ j ≤ n} = 1/

√
2

and
δdmin ≈ ε/

√
2.

However,

∆ ≈ min{|d2 sin(θ1 − θj)| : 2 ≤ j ≤ n} = |d2 sin(θ1 − θ2)| =
√

2/
√

2 = 1

independent of ε.

We can also get bounds on κXj·
, the condition number of the unit eigenvector correspond-

ing to θj, in the general non-diagonal case. From (6.16) it follows that

κXj·
≤ ‖X‖2∆−1. (6.22)

Notice that ‖X−1‖ does not appear in these bounds – near collinearity of eigenvectors does
not produce ill-conditioned eigenvectors. Indeed, as we saw at the end of Section 2.4 it can
improve the conditioning of eigenvectors.

7 Eigenspace perturbation

Now let us consider the problem of bounding the perturbation of an eigenspace. We wish to
find P and Q such that

(

I P
Q∗ I

)(

A11 E12

E∗
12 A22

)(

I Q
P ∗ I

)

and
(

I P
Q∗ I

)(

B11 F12

F ∗
12 B22

)(

I Q
P ∗ I

)

are block diagonal. Since both matrices are by construction Hermitian, it is enough to ensure
that their (1,2) blocks are both 0. The resulting equations are

A11Q + PA22 = −(E12 + PE∗
12Q) (7.1)

B11Q + PB22 = −(F12 + PF ∗
12Q) (7.2)

or equivalently,
T (P, Q) = −(E12 + PE∗

12Q, F12 + PF ∗
12Q), (7.3)

where T is defined by

T (P, Q) ≡ (A11Q + PA22, B11Q + PB22). (7.4)
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We shall identify the n × 2n matrix [X Y ] with the pair (X, Y ). Incidentally, if X and Y

are real then ‖[X Y ]‖F = ‖X + iY ‖F .
We need to bound the norm of the solution to this system of non-linear equations. Stewart

and Sun have done this – see for example [14, Theorem VI.2.13]. Their method was to obtain
a bound on the solution to the linearized system, they then use this, and a theorem on the
norm of the solution of a non-linear equation in terms of the norm of the solution of the

linearized version [14, Theorem V.2.11]10. Unfortunately, they worked in terms of the norm

‖(P, Q)‖F ≡ max{‖P‖F , ‖Q‖F}.

Consequently, they obtain the same bound on P and Q. In the last section we have seen
that different eigenvectors can have different condition numbers, so we would like to bound
P and Q separately. We follow the general approach in [14] but bound P and Q separately.

7.1 dif(A11, B11, A22, B22)

Let us consider the linearized version of (7.3): T (P, Q) = (E12, F12). It has solution (P, Q) =

T−1(E12, F12). Stewart and Sun wanted to bound ‖(P, Q)‖F ≡ max{‖P‖F , ‖Q‖F} so they
defined

d̃if(A11, B11, A22, B22) ≡ inf
‖(P,Q)‖F≥1

‖T (P, Q)‖F (7.5)

which is with in a factor of
√

2 of the perhaps more natural definition

dif(A11, B11, A22, B22) ≡ inf
‖(P,Q)‖F≥1

‖T (P, Q)‖F = ‖T−1‖−1. (7.6)

We wish to bound P and Q separately, so we define

difP (A11, B11, A22, B22) ≡ inf
‖P‖F≥1

‖T (P, Q)‖F = ‖ΠPT−1‖−1 (7.7)

difQ(A11, B11, A22, B22) ≡ inf
‖Q‖F≥1

‖T (P, Q)‖F = ‖ΠQT−1‖−1, (7.8)

where ΠP and ΠQ denote the projections defined on Mm,n⊕Mm,n given by ΠP (P, Q) = (P, 0)

and ΠQ(P, Q) = (0, Q). Since {(P, Q) : ‖P‖F ≥ 1} ⊂ {(P, Q) : ‖(P, Q)‖F ≥ 1}, and

{(P, Q) : ‖Q‖F ≥ 1} ⊂ {(P, Q) : ‖(P, Q)‖F ≥ 1}, it follows that

difP ≥ dif, and difQ ≥ dif. (7.9)

Also,

dif−1 = ‖T−1‖ = ‖ΠPT−1 + ΠQT−1‖ ≤ ‖ΠP T−1‖ + ‖ΠQT−1‖ = dif−1
P + dif−1

Q . (7.10)

So from (7.9) and (7.10) we have

max{dif−1
P , dif−1

Q } ≤ dif−1 ≤ dif−1
P + dif−1

Q .

10This approach was first employed by Stewart in 1971, but few others have employed his powerful method
[15, Theorem 3.5].
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The quantities difP and difQ will play an important role in our analysis, so we would like

to understand them and be able to compute them. Here is a formula for difP and difQ in

the diagonal case.

Lemma 7.1 Let

A = diag(d1 cos(θ1), . . . , dn cos(θn)), and B = diag(d1 sin(θ1), . . . , dn sin(θn)).

Let A11 and B11 be m × m. Let P and Q be m × (n − m) and such that

A11Q + PA22 = E12 (7.11)

B11Q + PB22 = F12 (7.12)

Suppose that

E = [ers]
m,n
r=1,s=m+1, F = [frs]

m,n
r=1,s=m+1, P = [prs]

m,n
r=1,s=m+1, and Q = [prs]

m,n
r=1,s=m+1.

Then, for m + 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have the entry-wise bounds

|pij| ≤ 1

|dj sin(θi − θj)|
√

|eij|2 + |fij|2 (7.13)

|qij| ≤ 1

|di sin(θi − θj)|
√

|eij|2 + |fij|2. (7.14)

Furthermore,

difP = max
i=m+1,...,n, j=1,...,m

|δj(θi)
−1| (7.15)

difQ = max
i=m+1,...,n, j=1,...,m

|δi(θj)
−1|. (7.16)

Proof Take 1 ≤ i ≤ m and m + 1 ≤ j ≤ n and consider the i, j entry of the equations
(7.11-7.12). For simplicity of notation let q = qij, p = pij, e = eij and f = fij. The resulting
equations are

di cos(θi)q + dj cos(θj)p = e (7.17)

di sin(θi)q + dj sin(θj)p = f. (7.18)

Now write these in matrix-vector form and compute the inverse of the matrix to obtain

(

p
q

)

=
1

cos(θj) sin(θi) − cos(θi) sin(θj)

(

d−1
j 0
0 d−1

i

)(

sin(θi) − cos(θi)
− sin(θj) cos(θj)

)(

e
f

)

.

Hence we obtain the asserted bounds:

|p| ≤ 1

|dj sin(θi − θj)|
√

|e|2 + |f |2
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|q| ≤ 1

|di sin(θi − θj)|
√

|e|2 + |f |2.

The entry-wise bound (7.13) on P implies

difP ≤ max
i=m+1,...,n, j=1,...,m

|δj(θi)
−1|.

We must show that this inequality can be attained. Let i, j be a pair of indices for which
the maximum is attained. Set all the entries of E and F to be zero except

eij = sin(θi), and fij = − cos(θi).

Then ‖[E, F ]‖F = 1 and

‖P‖F ≥ |pij| =
1

|dj sin(θi − θj)|
= max

i=m+1,...,n, j=1,...,m
|δj(θi)

−1|.

Thus
difP ≥ max

i=m+1,...,n, j=1,...,m
|δj(θi)

−1|,

and so we have (7.15). One can prove (7.16) in exactly the same way. 2

This lemma not only gives a formula in the diagonal case. It allows us to interpret difP :

dif−1
P is the minimum perturbation of a normalized generalized eigenvalue of (A11, B11) that

will make its argument the same as that of a normalized generalized eigenvalue of (A22, B22)

(mod π).
One would like to extend this result to the case where Aii and Bii are not diagonal by

saying that the equations (7.11-7.12) are equivalent to

(X∗
1A11X1)(X

−1
1 QX2) + (X∗

1PX−∗
2 )(X∗

2A22X2) = X∗
1E12X2 (7.19)

(X∗
1B11X1)(X

−1
1 QX2) + (X∗

1PX−∗
2 )(X∗

2B22X2) = X∗
1F12X2, (7.20)

where X1 and X2 are m×m and (n−m)×(n−m) and diagonalize (A11, B11 and (A22, B22)).

Then using the diagonal result Lemma 7.1 to bound X−1
1 QX2 and X∗

1PX−1
2 and then convert-

ing these bounds to bounds on Q and P . Unfortunately, in the process, we will introduce

terms ‖X−1
1 ‖ and ‖X−1

2 ‖. That is, ill conditioning of the eigenvectors will result in poor
bounds.

If A and B are not diagonal then we can numerically estimate values µP by estimating

‖ΠP T−1‖ since we can solve T (P, Q) = (E, F ) using (7.19-7.20). The standard approach

would be to use the power method on (ΠP T−1)∗(ΠP T−1) = T−1∗ΠP T−1. A very slight

improvement would be to use the Lanczos method [13]. Both these methods require the use
of the adjoint of the transformation T . This is easily computed. Taking the inner product
on Mm,n−m ⊕ Mm,n−m to be

<(X, Y ), (U, V )> ≡ tr(XU ∗ + Y V ∗),
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we have ‖[X Y ]‖2
F = <(X, Y ), (X, Y )>. Now

< T (P, Q), (R, S) > = tr(A11QR∗ + PA22R
∗ + B11QS∗ + PB22S

∗)

= tr(QR∗A11 + PA22R
∗ + QS∗B11 + PB22S

∗)

= tr(P (A22R
∗ + B22S

∗) + Q(S∗B11 + R∗A11))

= tr(P (RA∗
22 + SB∗

22)
∗ + Q(B∗

11S + A∗
11R)∗)

= tr(P (RA22 + SB22)
∗ + Q(B11S + A11R)∗)

= < (P, Q), (RA22 + SB22, B11S + A11R) >

using the fact that Aii and Bii are self-adjoint in the penultimate step. Thus the adjoint of
T is

T ∗(R, S) = (RA22 + SB22, B11S + A11R).

To compute T−1∗(E, F ) = T ∗−1(E, F ) we must solve T ∗(R, S) = (E, F ). This is easy since in

solving (7.19-7.20) to compute T−1 we have already diagonalized (A11, B11) and (A22, B22).
One can avoid the use of the adjoint by using the Monte Carlo estimation: just compute

‖ΠP T−1(E, F )‖F for several randomly chosen pairs (E, F ) and take the largest. Another nice

aspect of the Monte Carlo approach is that the expensive part of computing ΠP T−1(E, F ) is

computing T−1(E, F ). Once you have this, you can compute ΠPT−1(E, F ) and ΠQT−1(E, F )

easily, and hence estimate both difP and difQ at essentially the same computational cost.

Kenney and Laub analyze the probabilistic properties of these Monte Carlo estimates [11].

7.2 Eigenspace perturbation bounds

Now let us bound the solution of the non-linear equations, and thereby derive eigenspace
perturbation bounds.

Theorem 7.2 Suppose that (A11, B11) and (A22, B22) are definite pairs. To simplify nota-
tion, set

µP = difP , µQ = difQ, and η = ‖[E F ]‖F .

Assume that
4η2µPµQ < 1. (7.21)

Then T (P, Q) = (E + PE∗Q, F + PF ∗Q) has a unique solution and this solution satisfies
the bounds

‖P‖F ≤ 2ηµP

1 +
√

1 − 2η2µP µQ

≤ 2 · difP · ‖[E, F ]‖F , (7.22)

‖Q‖F ≤ 2ηµQ

1 +
√

1 − 4η2µP µQ

≤ 2 · difQ · ‖[E, F ]‖. (7.23)
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Furthermore, suppose that T (P1, Q1) = (E, F ), that is, (P1, Q1) is the solution to the lin-
earized problem, then

‖P1‖F ≤ difP · ‖[E, F ]‖F (7.24)

‖Q1‖F ≤ difQ · ‖[E, F ]‖F (7.25)

‖P − P1‖F ≤ ζ

1 − ζ
difQ · ‖[E, F ]‖F (7.26)

‖Q − Q1‖F ≤ ζ

1 − ζ
difp · ‖[E, F ]‖F (7.27)

where

ζ ≡ 4η2µPµQ

1 +
√

1 − 4η2µP µQ

. (7.28)

Proof Recall that by definition, µP = difQ and µQ = difQ are such that if

T (U, V ) = (X, Y )

then
‖U‖F ≤ µP‖[X Y ]‖F and ‖V ‖F ≤ µQ‖[X Y ]‖F . (7.29)

Set P0 = 0 and Q0 = 0, and define sequences P1, P2, . . . and Q1, Q2, . . . by

T (Pk+1, Qk+1) = −(E + PkE
∗Qk, F + PkF

∗Qk). (7.30)

We will show that these sequences converge to the desired P and Q.
The first step is to show that the sequences are bounded. To this end, we derive bounds

on the individual terms in the sequences, using (7.29) for the first inequality:

‖Pk+1‖F ≤ µP‖[(E + P ∗
k E∗Qk) (F + P ∗

k F ∗Qk)]‖F

≤ µP (‖[E F ]‖F + ‖[P ∗
k E∗Qk P ∗

k F ∗Qk]‖F )

≤ µP (η + ‖Pk‖‖Qk‖η)

≤ µP (η + ‖Pk‖F‖Qk‖Fη). (7.31)

In the same way
‖Qk+1‖F ≤ µQ(η + ‖Pk‖F‖Qk‖Fη). (7.32)

Let p0 = q0 = 0. Set

pk+1 = µP (η + pkqkη) (7.33)

qk+1 = µQ(η + pkqkη). (7.34)

Then
‖P0‖F ≤ p0 and ‖Q0‖F ≤ q0,
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and so by (7.30) (7.31) and (7.32) and induction

‖Pk‖F ≤ pk and ‖Qk‖F ≤ qk for k = 1, 2, . . . .

From (7.33-7.34) it follows that qk = (µQ/µP )pk thus

pk+1 = µPη + µQηp2
k, f(pk).

where f(p) = µPη + µQηp2. The function f is increasing on [0,∞) and has a fixed point at

p∗ ≡ 2ηµP

1 +
√

1 − 4η2µP µQ

> 0.

Apply the increasing function f to 0 ≤ p0 ≤ p∗ to get

0 ≤ f(0) ≤ f(p0) ≤ f(p∗) = p∗

and hence 0 ≤ p1 ≤ p∗. Repeating this we have 0 ≤ pk ≤ p∗ for k = 1, 2, . . .. So

‖Pk‖F ≤ pk ≤ p∗.

Since qk = (µQ/µP )pk

‖Qk‖F ≤ qk ≤ q∗ ≡ 2ηµQ

1 +
√

1 − 4η2µP µQ

.

Now we shall show that the sequences P0, P1, . . . and Q0, Q1, . . . are Cauchy. To this end

we generate sequences ∆k
P and ∆k

Q such that

‖Pk+1 − Pk‖F ≤ ∆k
P , and ‖Qk+1 − Qk‖F ≤ ∆k

Q, k = 0, 1, 2, . . .

Since P0 = 0 and Q0 = 0, and
T (P1, Q1) = −(E, F )

by (7.29), we may take

∆0
P = µPη, and ∆0

Q = µQη.

Since T is linear it follows from the definition of T in (7.4), and that of the sequences

{Pk}, {Qk} in (7.30), that

T (Pk+1 − Pk, Qk+1 − Qk) = −(Pk−1EQk−1 − PkEQk, Pk−1FQk−1 − PkFQk).

Let

Q̂k−1 =
(

Qk−1 0
0 Qk−1

)

and Q̂k =
(

Qk 0
0 Qk

)

and note that
‖Q̂k−1 − Q̂k‖ = ‖Qk−1 − Qk‖ ≤ ‖Qk−1 − Qk‖F .
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Then

(Pk−1EQk−1 − PkEQk, Pk−1FQk−1 − PkFQk) = Pk−1[E F ]Q̂k−1 − Pk[E F ]Q̂k.

From our assumption (7.29) we have

‖Pk+1 − Pk‖F ≤ µP‖[(Pk−1EQk−1 − PkEQk) (Pk−1FQk−1 − PkFQk)]‖F

= µP‖Pk−1[E F ]Q̂k−1 − Pk[E F ]Q̂k‖F

= µP‖(Pk−1[E F ]Q̂k−1 − Pk[E F ]Q̂k−1) + (Pk[E F ]Q̂k−1 − Pk[E F ]Q̂k)‖F

≤ µP (‖Pk−1[E F ]Q̂k−1 − Pk[E F ]Q̂k−1‖F + ‖Pk[E F ]Q̂k−1 − Pk[E F ]Q̂k‖F )

≤ µP (‖Pk−1 − Pk‖‖Qk−1‖η + ‖Q̂k−1 − Q̂k‖‖Pk‖η)

≤ µPη(‖Pk−1 − Pk‖q∗ + ‖Q̂k−1 − Q̂k‖p∗)
≤ µPη(‖Pk−1 − Pk‖F q∗ + ‖Qk−1 − Qk‖F p∗).

So if we set
∆k

P = µP (q∗∆k−1
P + p∗∆k−1

Q )η (7.35)

it is indeed a bound on ‖Pk+1 − Pk‖F . Similarly, we may take

∆k
Q = µQ(q∗∆k−1

P + p∗∆k−1
Q )η (7.36)

as an upper bound on ‖Qk+1 − Qk‖F .

It follows from (7.35-7.36) that µQ∆k
P = µP ∆k

Q for k = 0, 1, . . .. Also, we have seen that

µQp∗ = µP q∗. Substituting these into (7.35), and using the definition of ζ in (7.28) we have

∆k
P = 2µQp∗η∆k−1

P = ζ∆k−1
P = · · · = ζk∆0

P = ζkµPη.

Thus, since ζ ≤ ρ < 1 by (7.21), the sequence P0, P1, . . . is Cauchy, and hence converges.

Since ‖Pk‖F ≤ p∗, it follows that the limit of the sequence P0, P1, . . . also has Frobenius
norm at most p∗.

We may apply exactly the same argument to Q0, Q1, . . ..

The bounds on ‖P − P1‖F and ‖Q − Q1‖F are easily verified using the ∆k
P ’s and ∆k

Q’s

we have found:

‖P − P1‖F ≤
∞
∑

k=1

∆k
P =

ζµP

1 − ζ
η

and similarly for Q. 2

One may wonder whether the constants in this theorem are the best possible. We shall
show that the constants in (7.22) and (7.23) are within a factor of 2 of the optimal constants.

The idea is that the first order bounds (7.24-7.25) are attainable and the constants in these

bounds are only a factor of 2 less than in the rigorous bounds (7.22) and (7.23). Here are the

details for the bound on P . Since µP = difP , (defined in (7.7)) there is a choice of non-zero
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(E, F ) for which the bound (7.24) is attained. Now let (P (t), Q(t)) denote the solution to

T (P, Q) = −(tE + tPE∗Q, tF + tPF ∗Q) for small t > 0. Set ηt = ‖(tE, tF )‖F . Recall that

(P1(t), Q1(t)) is the solution to the linearized problem. Note that

ζ < 4η2µPµQ ≤ (4t‖(E F )‖F µPµQ) · ηt

so

‖P (t)‖ ≥ ‖P1(t)‖F − ‖P1(t) − P (t)‖F

≥ µPηt − (4t‖(E F )‖FµP µQ) · ηt

= {µP − 4t‖(E F )‖FµPµQ} · ηt.

Now if ‖P (t)‖ ≤ cηt for all t > 0 then

c ≥ lim
t↓0

P (t)

ηt

= lim
t↓0

µP − 4t‖(E F )‖FµPµQ = µP .

Thus, our bound 2µP η in (7.22) is within a factor of 2 of optimality.
The next lemma is of independent interest. It shows how one can deduce a bound on

the angle between two subspaces from a norm bound on the difference between two matrices
whose columns span the subspaces.

We let R(X) = RX denote the range of the matrix X, and Θ(·, ·) denotes the diagonal

matrix of canonical angles between two subspaces. See, for example, [14, Section I.5.2] for a
formal definition.

Lemma 7.3 Let X, X̃ ∈ Mn,m. Let ||| · ||| denote any unitarily invariant norm. Assume

that ‖X − X̃‖ < σm(X). Then

||| tan(Θ(R(X),R(X̃))) ||| ≤ σ−1
m (X)|||X − X̃|||

1 − σ−1
m (X)‖X − X̃‖

. (7.37)

Proof First assume that X has orthonormal columns, and so σm(X) = 1. Let Q ∈ Mn

be a unitary matrix such that

QX =
(

Im

0

)

.

Let Y = QX̃ and partition Y as

Y =
(

Y1

Y2

)

.

Note that
‖I − Y1‖ ≤ ‖X − X̃‖ < 1,

and that Y and Y (I + Y1)
−1 have the same range space. So

Θ(R(X),R(X̃)) = Θ
(

R
(

I
0

)

,R
(

Y1

Y2

))

= Θ
(

R
(

I
0

)

,R
(

I
Y2(I − Y1)

−1

))

.
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Thus the singular values of Y2(I − Y1)
−1 are the tangents of the canonical angles between

the subspaces

R
(

I
0

)

and R
(

I
Y2(I − Y1)

−1

)

,

and so

||| tan(Θ(R(X),R(X̃)))||| = |||Y2(I + Y1)
−1|||

≤ |||Y2||| ‖(I + Y1)
−1‖

≤ |||Y2|||
1 − ‖Y1‖

≤ |||X − X̃|||
1 − ‖X − X̃‖

.

Since σm(X) = 1, this is (7.37).
If X doesn’t have orthonormal columns then write X = QR where Q ∈ Mm,n has

orthonormal columns. We may then apply the result to Q = XR−1 and X̃R−1, which have

the same ranges as X and X̃. 2.

Theorem 7.4 Let (A, B) be a definite pair of n × n Hermitian matrices, and take m ∈
{1, . . . , n − 1}. Suppose that X = (X1 X2) has unit columns and that A11, B11 ∈ Mm are
such that

X∗AX =
(

A11 0
0 A22

)

, and X∗BX =
(

B11 0
0 B22

)

.

Let

X∗(A + E)X =
(

Ã11 E12

E∗
12 Ã22

)

, and X∗(B + F )X =
(

B̃11 F12

F ∗
12 B̃22

)

.

Set

µP = difP (Ã11, B̃11, Ã22, B̃22) (7.38)

µQ = difQ(Ã11, B̃11, Ã22, B̃22). (7.39)

Assume that 4η2µPµQ < 1 where η = ‖(E12 F12)‖F .

Then there is a matrix Y such that Y = (Y1 Y2) and Y ∗(A + E)Y and Y ∗(B + F )Y are
block diagonal where

Y1 = X1 + X2P, Y2 = X2 + X1Q

and

‖P‖F ≤ 2µP‖(E12 F12)‖F (7.40)

‖Q‖F ≤ 2µQ‖(E12 F12)‖F . (7.41)

Consequently,

‖ tan(Θ(R(X1),R(Y1)))‖F ≤ 2µPσ−1
m (X1)‖X2‖‖(E12 F12)‖F

1 − 2µPσ−1
m (X1)‖X2‖‖(E12 F12)‖F

(7.42)
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and

‖ tan(Θ(R(X2),R(Y2)))‖F ≤ 2µPσ−1
n−m(X2)‖X1‖‖(E12 F12)‖F

1 − 2µPσ−1
n−m(X2)‖X1‖‖(E12 F12)‖F

. (7.43)

The quantities σ−1
m (X1) and ‖X2‖ occur in our tan Θ bound (7.42). Since X1 and X2 are

required to have unit columns σ−1
m (X1) and ‖X2‖ will be minimized if we take X1 and X2 to

have orthonormal columns. The resulting bound

‖ tan(Θ(R(X1),R(Y1)))‖F ≤ 2µP‖(E12 F12)‖F

1 − 2µP‖(E12 F12)‖F
, (7.44)

is much cleaner. We did not explicitly make this choice of X1 and X2 in the theorem because

the choice of X1 and X2 also determines Ã22 and B̃22 which occur in the definition of T and
may thus adversely affect the value of µP .

7.3 Comparison with results of Stewart and Sun

Now let us compare our bounds with those in [14, Chapter 6, Section 3].

In [14, Theorem VI.3.7] Stewart and Sun give a bound on

max{‖P‖F , ‖Q‖F} (7.45)

We have seen that in the definite generalized eigenvalue problem it is possible for one of a

pair of complementary eigenspaces to be much better conditioned than the other11. A bound
on (7.45) cannot detect this while our separate bounds on P and Q in (7.22) and (7.23) can.

It is hard to compare our bounds directly with those in [14, Theorem VI.3.7] because of the

different notation. When E and F are sufficiently small the bound in [14, Theorem VI.3.7]
on P assumes the form

‖P‖F
<∼ ‖X1‖F‖X2‖F max{‖E‖, ‖F‖}

δ
(7.46)

where X = (X1 X2) is such that

X∗AX = diag(cos(θ1), . . . , cos(θn)), X∗BX = diag(sin(θ1), . . . , sin(θn))

(note: this choice of X corresponds to the normalization (1.1) and is not the normalization

we use in this paper) and

δ =
1√
2

min
i=1,...,m, j=m+1,...,n

| sin(θi − θj)|.

The columns of X have lengths
√

d−1
i .

11This is in contrast to the symmetric eigenvalue problem where both pairs are have the same condition
number because in the symmetric eigenvalue problem complementary eigenspaces are necessarily orthogonal
complements.
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There are a couple of nice aspects of (7.46) as compared with other results in the litera-

ture. Firstly, the Crawford number does not appear–rather we see the d−1
i ’s in the form of

‖X1‖F and ‖X2‖F . Secondly, if it should happen that though dmin is small, the quantities

d1, . . . , dm are all large then ‖X1‖F will be small. That is, this bound can exploit the fact
that the normalized generalized eigenvalues are large in one group.

Never-the-less, our bounds in Theorem 7.2 are stronger. As before (7.46) bounds the

separation by looking at the angular separation, i.e. min | sin(θi − θj)|, and the magnitude,

i.e. dmin, separately, whereas we look at them together in µP and µQ. In the diagonal case

our bound is demonstrably stronger. In the general case one would expect our bound to be
stronger. Our bound can be weaker by a factor of at most 2, since it is within a factor of 2
of the optimal bound.

Here is an example to show that even when µP and µQ are equal our bounds (7.22) and

(7.23) can be much stronger than (7.46).

Example 7.5 Let t > 0 and set

A =











1
1

−1
−1











, B =











2
t

2
t











.

The normalized generalized eigenvalues of (A, B) are the pairs (1,2), (1,t), (-1,2), (-1,t).
The reader may want to plot these pairs on the plane.

Let us take m = 2 and think of t as being large. Then, since in (7.46) the columns of X

have norms d−1
i we have

‖X1‖F = ‖X2‖F =
√

(1 + 22)−1 + (12 + t2)−1 ≈ 1/
√

5

and
δ ≈ 2/t

so
‖X1‖F‖X2‖F

δ
≈ t

10
.

This is the factor that multiplies the norm on the perturbation (E, F ) in (7.46). It is linear
in t.

In our bounds the error is multiplied by µP or µQ. Plotting the normalized generalized

eigenvalues, and using the fact that δj(θi) is the distance from the jth generalized unit

eigenvalue to the line through the origin and the kth generalized eigenangle, one can see
that

µP = max
i=3,4, j=1,2

|δj(θi)|−1 ≥ 1,

independent of t.
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Now let us compare (7.22-7.23) with [14, Theorem VI.3.10]:

‖ sinΘ(R(X1),R(X̃1))‖F ≤
√

‖A2 + B2‖
c(A, B)

√

‖EX1‖2
F + ‖FX1‖2

F√
2 δ c(Ã, B̃)

, (7.47)

where the matrices X and X̃ block diagonalize (A, B) and A+E, B +F ) and X = (X1, X2)
is such that X1 and X2 have orthonormal columns, and δ is as before.

There are two essential differences. Firstly, Stewart and Sun’s bound contains an addi-
tional factor

√

‖A2 + B2‖
c(A, B)

(which is roughly the ratio of the distance of furthest point from the origin in W (A+ iB) to

the closest point) where we have the factor n. Secondly, the bound in (7.47) uses δc(Ã, B̃)

where we use dif−1
P or dif−1

Q . It is not hard to construct examples where the ratio

δc(A, B)

dif−1
P

is arbitrarily close to 0. Thus (7.22) can be stronger than (7.47). In the diagonal case

the formula (7.15) shows that δc(A, B) ≤ difP . One might expect that in the general case

δc(A, B) ≤ c(n)difP for some moderate function c(n) but we have not been able to prove
this.

Stewart and Sun observe that the presence of the two Crawford numbers in the denom-
inator of (7.47) is troubling and ask whether both of them should be there. In (7.42) and

(7.44) have replaced the two Crawford numbers with a single µ−1
P . In the diagonal case our

bound is stronger.

8 Conclusions

We have proposed the use of normalized generalized eigenvalues in the perturbation theory
for the definite generalized eigenvalue problem. The use of normalized generalized eigenval-
ues, rather than eigenangles (normalization (1.1)) or generalized eigenvalues (normalization

(1.2)), preserves the scale of the eigenvalue rather than normalizing the eigenvalue for the

purposes of esthetics/uniqueness. The resulting perturbation bounds are generally stronger
than the existing bounds. They can be stronger by an arbitrarily large factor, and are never
much weaker.

In the case of eigenangles, qualitative forms of our quantitative bounds were given by
Stewart in 1972, and are proposed as error estimates in LAPACK [1, eigenangle bound on

p. 60]. However in the case of eigenvectors, the observation that

|δj(θk)| = dj| sin(θj − θk)|
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is the appropriate gap appears to be completely novel. It provides a great advance over
existing analyzes, in that the bounds it yields are much stronger than the bounds in the
literature, and in fact they are asymptotically optimal. They allow one to determine the
condition number of eigenvectors, and show that complementary eigenspaces can have very
different condition numbers.

Our approach has resolved two open question in [14, Chapter VI]. It has also provided
some insight as to why ill-disposed eigenangles do not usually compromise the accuracy of
other eigenangles. Finally, our approach has provided clean quadratic bounds for off diagonal
perturbations.

Our approach has been to first analyze the diagonal case and then extend the results to

the general case by introducing a factor of ‖X‖2 into the bounds. While this is certainly

simple, and gives fairly good bounds here because ‖X‖2 ≤ n, it is not elegant. A direct
analysis of the general case would be ideal.
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